跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/13 11:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:信肯尼
研究生(外文):Kanishk Singh
論文名稱:研發YTixOy EIS pH感測器和導電氧化物可撓式EGFET生物感測器檢測葡萄糖和Cardiac Troponin
論文名稱(外文):Development of YTixOy EIS pH Sensor and Conductive Oxide Flexible EGFET Biosensor for Detection of Glucose and Cardiac Troponin
指導教授:潘同明
指導教授(外文):T. M. Pan
學位類別:博士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:142
中文關鍵詞:Y2O3感測膜溶膠凝膠Electrolyte-insulator semiconductorExtended-gate filed-effect transistor伸缩氧化銦鋅聚酰亞胺PET伸缩RuOxSuper-Nernstian葡萄糖檢測
外文關鍵詞:Y2O3 sensing filmSol-gelElectrolyte-insulator semiconductorExtended-gate filed-effect transistorFlexibleIndium-zinc oxidePolyimidePET flexibleRuOxSuper-NernstianGlucose detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
醫療保健診斷在世界範圍內發揮著至關重要的作用,最終有助於預防和管理威脅生命的疾病。在這種情況下,需要一種潛在的診斷方法來識別各種疾病及其適當的治療方法。為解決以下挑戰,電解質-絕緣體-半導體(EIS)傳感器因其簡單,低成本製造和快速響應而成為有前途的候選者。為了製造EIS傳感器,在過去的幾年中經常研究幾種物理氣相沉積方法。在這裡,我們集中精力通過在CMOS製造領域很少研究的溶膠-凝膠法製備EIS傳感器。我們最初的研究集中在退火溫度(700,800和900°C)對YTixOy電陶瓷傳感膜的結構特性和傳感特性的影響上。在我們的研究中,我們發現在800°C退火的YTixOy傳感膜表現出接近Nernstian響應(58.52 mV / pH),低滯後(2.6 mV)和較低的漂移速率(0.10 mV / h)。這種優化的溫度抑制了傳感膜的固有缺陷和氧空位,並最終形成了化學計量的YTixOy傳感膜。
    為了解決其他類型的傳感器,場效應傳感器設備為生物分子的無標記檢測提供了一個潛在的平台。擴展柵場效應晶體管(EGFET)傳感器可以直接檢測表面上的固有電荷,該固有電荷是在受體與生物分子結合後產生的。基於此原理,我們在柔性聚對苯二甲酸乙二醇酯(PET)襯底上的柔性RuOx傳感膜上製造了RuOx傳感膜,並進一步用於pH和無酶葡萄糖檢測。溶膠凝膠衍生的RuOx傳感膜在非常低的溫度(90°C)下退火,顯示出超能斯特pH敏感性(65.11 mV / pH),具有出色的線性。這些器件還具有較低的磁滯電壓(〜1 mV)和較低的漂移速率(2.08 mV / h)。此外,RuOx傳感膜用於通過4-羧基苯硼酸(4-CPBA)(一種合成受體)檢測葡萄糖。 4-CPBA和葡萄糖之間的結合產生了硼酸酯混合物,該複合物帶負電荷。硼酸酯複合物的這種固有的負電荷會改變EGFET感應表面的載流子濃度。這一基本基本原理有助於檢測PBS緩衝液以及人血清中的葡萄糖。葡萄糖的敏感性為6.89 mV / mM,濃度範圍為1-8 mM。此外,我們還研究了RuOx傳感膜對目標生物分子的靈活性和高靈敏度。
    在柔性基板上室溫製造高導電性且無缺陷的傳感膜是一項艱鉅的任務。因此,在我們的下一個研究中,我們在室溫下在柔性聚酰亞胺或Kapton基板上製造InZnxOy傳感膜。為了確認膜XRD的物理特性,分別進行了AFM和XPS以評估其結晶度,表面形貌和化學組成。首次使用基於InZnxOy的柔性EGFET傳感器檢測pH。這些器件在任何進一步的退火處理下均顯示出出色的pH敏感性56.29 mV / pH,線性良好,R2 = 0.99。此外,這些器件顯示出低磁滯(4.6 mV)和較低的漂移速率(2.08 mV / h),這證實了存在無缺陷,緻密和化學計量的InZnxOy傳感膜的存在。
    在達到出色的pH敏感性的InZnxOy柔性EGFET傳感器後,被用於檢測心肌肌鈣蛋白(cTnI),急性心肌梗死(AMI)生物標誌物。 InZnxOy的高電導率和在柔性基板上的均勻製造為cTnI單克隆抗體的功能化提供了一個有效的平台,並針對cTnI生物標誌物檢測進行了優化,線性範圍為0.1至10 ng / ml,這顯示了快速檢測的良好前景AMI。
Healthcare diagnostic plays a vital role all over the world, which ultimately helps in the prevention and management of life-threatening diseases. In this context, a potential diagnostic method is required to identify various ailments and their appropriate treatment. Addressing the following challenges, Electrolyte-Insulator-Semiconductor (EIS) sensor is a promising candidate due to its simplicity, low-cost fabrication, and quick response. In order to fabricate the EIS sensor, several physical vapor deposition methods gave been frequently studies in the past few years. Here, we focused to prepare EIS sensor by the sol-gel method that rarely studied in the field of CMOS fabrication. Our initial study was focused on the effect of annealing temperature (700,800 and 900°C) on structural properties and sensing characteristics of the YTixOy electroceramic sensing membrane. In our investigated, we found that the YTixOy sensing membrane annealed at 800°C exhibited nearly Nernstian response (58.52 mV/pH), low hysteresis (2.6 mV) and lower drift rate (0.10 mV/h). This optimized temperature suppresses the intrinsic defect and oxygen vacancy of the sensing membrane and ultimately forms a stoichiometric YTixOy sensing film.
In order to address the other type of sensors, the field-effect sensor devices provide a potential platform for the label-free detection of the biomolecule. The Extended gate field-effect transistor (EGFET) sensor can directly detect the intrinsic charge on the surface which originates after the binding of receptor and biomolecule. Based on this principle we fabricate RuOx sensing membrane on flexible RuOx sensing membrane on flexible polyethylene terephthalate (PET) substrate and further used for the pH and enzyme-free glucose detection. The sol-gel derived RuOx sensing membrane annealed at very low temperature (90°C) exhibited super-Nernstian pH sensitivity (65.11 mV/pH) with excellent linearity. These devices also have shown low hysteresis voltage (~ 1 mV) and a lower drift rate (2.08 mV/h). Furthermore, RuOx sensing membrane employed for the detection of glucose by 4-Carboxyphenylboronic acid (4-CPBA), a synthetic receptor. The binding between 4-CPBA and glucose generates the boronate-ester complex which poses a negative charge. This intrinsic negative charge of the boronate-ester complex changes the carrier concentration of the EGFET sensing surface. This fundamental basic principle helps to detect the glucose in PBS buffer solution as well as human serum. The sensitivity of glucose was 6.89 mV/mM with concentration ranges from 1-8 mM. Furthermore, we also investigated the flexibility and high sensitivity of the RuOx sensing membrane towards the target biomolecule.
The room temperature fabrication of highly conductive and defect-free sensing membrane on a flexible substrate is a challenging task. Hence, in our next study, we perform room temperature fabrication of the InZnxOy sensing membrane on flexible polyimide or Kapton substrate. In order to confirm the physical characteristics of film XRD, AFM and XPS were performed to evaluate the crystallinity, surface topography, and chemical composition respectively. The InZnxOy based flexible EGFET sensor was employed for the detection of pH first time. These devices showed excellent pH sensitivity 56.29 mV/pH with good linearity R2=0.99 with any further annealing treatment. In addition, these devices are shown low hysteresis (4.6 mV) and lower drift rate (2.08 mV/h), which confirm the existence of defect-free, dense and stoichiometric InZnxOy sensing membrane.
After achieving excellent pH sensitivity of the InZnxOy flexible EGFET sensor, were used for the detection of cardiac troponin (cTnI), acute myocardial infarction (AMI) biomarker. The high conductivity and uniform fabrication of InZnxOy on the flexible substrate provides an efficient platform for functionalization of cTnI-monoclonal antibody and optimized for cTnI biomarker detection in a linear range from 0.l-10 ng/ml, which shows promising characteristic for quick detection of AMI.
Recommendation Letter from the Thesis Advisor
Thesis Oral Defense Committee Certification
Acknowledgment iii
Abstract iv
Table of Contents vii
Figure captions xi
Table captions xvi
Chapter 1: Introduction
1.1 Background 1
1.2 ISFET based biosensor 3
1.3 Extended gate field effect transistor (EGFET) sensor 5
1.4 Electrolyte Insulator Semiconductor (EIS) sensor 6
1.4.1 Oxide-liquid interface 7
1.4.2 Site-binding model 10
1.5 Role of flexible Substrate for FET based sensor 12
1.6 Sol-gel growth technology 13
1.6.1 Sol-gel precursor 16
1.6.2 Application of sol-gel process in FET fabrication 17
1.7 Importance of sensing material for EIS sensor 17
1.7.1 Yttrium oxide (Y2O3) 17
1.8 Importance of sensing material for EGFET sensor 20
1.8.1 Ruthenium oxide (RuOx) 21
1.8.2 Indium Zinc Oxide (InZnO) 24
1.9 Sensing analyte 27
1.9.1 pH sensing 27
1.9.2 Glucose sensing (by EGFET) 31
1.10 Acute myocardial infarction (AMI) 33
1.10.1 Biomarker of AMI 34
1.11 Motivation and objective of this work 36
1.12 Thesis organization 38
Chapter 2: Influence of annealing temperature on structural compositions and pH sensing properties of sol-gel derived YTixOy electroceramic sensing membranes
2.1 Introduction 41
2.2 Experimental 44
2.2.1 Preparation of YTixOy sol-gel solution 44
2.2.2 Fabrication of sol-gel based EIS sensor and material
Characterization method 44
2.3 Result and discussion 46
2.3.1 Structural properties of YTixOy sensing membrane 46
2.3.2 Sensing characteristic of YTixOy EIS sensor 49
2.4 Summary 57
Chapter 3: Super Nernstian pH response and enzyme-free detection of glucose using sol-gel derived RuOx on PET flexible-based extended-gate field-effect transistor
3.1 Introduction 58
3.2 Experimental 61
3.2.1 Materials and chemicals 62
3.2.2 Preparation of RuOx sol-gel solution 62
3.2.3 Fabrication of sol-gel RuOx sensing membrane-based EGFET
sensor 62
3.2.4 Surface functionalization 63
3.2.5 Electrical measurement and characterization 64
3.2.6 Bioanalyte preparation 65
3.3 Result and discussion 66
3.4 Summary 80
Chapter 4: An Extended-Gate FET-Based pH sensor with an InZnxOy membrane fabricated on a flexible polyimide substrate at room temperature
4.1 Introduction 83
4.2 Experiment 84
4.2 Result and discussion 86
4.2 Summary 91
Chapter 5: An ultrasensitive detection of cardiac troponin biomarker by InZnxOy flexible EGFET sensor
5.1 Introduction 93
5.2 Experiment 97
5.2.1 Materials and chemicals 97
5.2.2 InZnxOy EGFET sensor fabrication 97
5.2.3 Functionalization of cTnI-mAb on InZnxOy surface 97
5.2.4 Cardiac troponin (cTnI) detection method 99
5.3 Result and discussion 99
5.4 Summary 103
Chapter 6: Conclusion and scope for future work
6.1 Conclusion 104
6.2 Scope for future work 106
References 107
Publications 141


Figure captions

Figure 1-1 Schematic diagram of biosensor technology 2
Figure 1-2 (a) Schematic of ISFET structure (b) A Typical ID-VG
characteristics of the ISFET sensor at different pH solution 4
Figure 1-3 Structure and measuring setup of the capacitive EIS sensor 7
Figure 1-4 Gouy-Chapman-Stern model of the oxide-liquid interface and
the potential drop. 8
Figure 1-5 Electrolyte-oxide interfaces. Depending on the electrolyte pH, the surface groups can be neutral (MOH) or negative (MO-) or positive (MOH2+); pHpzc: pH value at the point of zero charges.. 11
Figure 1-6 Schematic processing route for the fabrication of high-κ dielectrics on p-type Si substrate.. 15
Figure 1-7 Reference voltage of a Y2O3 gate ISFET with PDA at 800°C as a function of pH at room temperature. The inset shows the response of Y2O3 dielectric.. 18
Figure 1-8 Amperometric response of modified electrode (holding at 0.70 V) upon addition of L-cysteine to increasing concentrations in 0.1 M phosphate buffer pH 7.0... 19
Figure 1-9 (a) Mechanism of the redox capacitance of platinum metal oxides in aqueous solution. (b) Cyclic voltammogram of a RuO2 electrode at different scan rates: I = Cv (c) ac impedance spectra of a cell of two RuO2/Ni electrodes with the different mass of metal oxide coating: 1 = electrolyte resistance, 2 = grain boundary resistance, 3 = diffusion impedance... 22
Figure 1-10 (a) Amperogram for the NADH quantification using RuO2-GNR/SPCE biosensor in PBS at pH 7.5 (b) Calibration curve for the detection of ethanol in same buffer concentration.. 23
Figure 1-11 (a) The schematic measurement layout of the pH sensor based on asymmetric laterally coupled dual-gate IZO-based EDL transistor (b) Transfer curves of the laterally coupled pH sensors measured in the dual-gate synergic modulation mode at different VREF of -0.6, 0, and 0.6 V, respectively.. 25
Figure 1-12 (a) Schematic drawings and optical images of solution-processed IZO TFT-based biosensor structure (b) Transfer characteristics of the low-temperature solution-processed IZO TFT-based biosensors before and after poly (G) immobilization with various concentrations.. 26
Figure 1-13 (a) C-V characteristic curve of SWCNT-PMMA capacitive EIS sensor (b) ConCap response at different penicillin concentrations for EIS-NT sensor, Insets: zoom at low penicillin concentrations from 5 to 100 µM.. 29
Figure 1-14 (a) pH based biomolecules detection using EIS structure (b) Urea detection using CeO2 based EIS sensor.. 30
Figure 2-1 Schematic illustration of a YTixOy EIS sensor and its measurement unit... 45
Figure 2-2 (a) XRD pattern of YTixOy sensing membranes annealed at different temperatures. AFM surface images of YTixOy sensing membranes after annealing at (b) 700 (c) 800 and (d) 900°C 46
Figure 2-3 XPS characterizations of (a) Y 3d (b) Ti 2p and (c) O 1s for YTixOy sensing membranes after annealing at various three temperatures (700, 800 and 900°C)... 48
Figure 2-4 C- V curves for pH sensing response of YTixOy sensing membranes annealed at (a) 700 (b) 800 and (c) 900°C. Inset: Reference voltage as a function of pH for YTixOy sensing membranes annealed at (a) 700 (b) 800 and (c) 900°C... 53
Figure 2-5 Hysteresis characteristics of YTixOy sensing membranes prepared at different annealing temperatures (700, 800 and 900°C) in pH loop of 7→ 4→ 7→10→7... 54
Figure 2-6 Drift rates of YTixOy sensing membranes annealed at different temperatures (700, 800 and 900°C) and measured in solution at pH 7... 56
Figure 3-1 (a) Schematic illustration of the RuOx on PET-based EGFET sensor, (b) EGFET measurement unit and (c) the sol-gel derived RuOx sensing film fabricated on flexible PET substrate.... 64
Figure 3-2 (a) XRD pattern and (b) AFM surface image of the RuOx sensing membrane... 66
Figure 3-3. XPS spectra of (a) Ru 3p and (b) O 1s for the RuOx sensing membrane.... 67
Figure 3-4 (a) Transfer characteristics (IDS-VREF) of the RuOx on PET-based EGFET sensor in different pH buffer solutions (pH = 2–12) (b) Reference voltage as a function of pH for the RuOx on PET-based EGFET sensor (in the linear region)... 69
Figure 3-5 (a) Output characteristics (IDS-VDS) of the RuOx on the PET-based EGFET sensor in the saturation region for different pH buffer solutions (pH = 2–12). (b) The linearity of the IDS for the RuOx EGFET in the saturation region... 72
Figure 3-6 (a) Hysteresis characteristics of the RuOx on PET-based EGFET sensor in pH loop of 7→ 4→ 7→10→7. Inset: enlarged the VREF of the RuOx on PET-based EGFET sensor in the VREF-time curve. (b) Drift rate of the RuOx on PET-based EGFET sensor measured in solution at pH 7 buffer solutions. (c) The reference voltage of the RuOx on the PET-based EGFET sensor for different H+, Na+, K+, Mg2+, and Ca2+ ion concentrations. (d) Evaluation of pH sensing performance as a function of bending cycle for the RuOx on PET-based EGFET sensor.... 75
Figure 3-7 (a) Schematic demonstration of the RuOx on PET-based EGFET sensor functionalization method for quantification of glucose. (b) Transfer characteristics (IDS-VREF) of the RuOx on PET-based EGFET biosensors for detection of glucose in PBS (c) Time-dependent response (VREF-T) for stepwise changes in the glucose (1–8 mM). (d) VREF shift of the RuOx-based EGFET biosensor as a function of glucose concentration (1–8 mM). The red circle represents the concentration of serum glucose determined by the RuOx-based EGFET biosensor. (e) VREF shift of the RuOx based EGFET biosensor plotted as functions of various saccharide concentrations in PBS. 77
Figure 4-1 (a) InZnxOy-based EGFET measurement unit. (b) Schematic illustration of the InZnxOy-based EGFET sensor. (c) Optical image of InZnxOy membrane deposited on PI substrate..... 85
Figure 4-2 (a) XRD analysis of InZnxOy sensing membrane (b) AFM image of InZnxOy sensing film.... 86
Figure 4-3 (a) In 3d, (b) Zn 2p and (c) O 1s energy levels in the XPS spectra of InZnxOy sensing membrane.... 87
Figure 4-4 (a) Transfer and (b) output characteristics of InZnxOy -based EGFET sensor measured in different pH buffer solutions. (c) Voltage sensitivity and (d) current sensitivity of InZnxOy -based EGFET sensor in IDS-VREF and IDS-VDS measurement under linear and saturation region, respectively.... 89
Figure 4-5 (a) Hysteresis characteristic of InZnxOy-based EGFET sensor in the pH loop of 7→4→7→10→7. (b) Drift rate of InZnxOy -based EGFET sensor measured at pH 7. (c) Evaluation of pH sensing performance of flexible InZnxOy -based EGFET sensor as a function of bending cycle.... 91
Figure 5-1 Schematic illustration of cTnI monoclonal antibody immobilization over the InZnxOy modified sensing membrane..... 98
Figure 5-2 Optimization of Debye length (DL) by changing buffer concentration for the maximum signal response..... 100
Figure 5-3 The time-dependent response of InZnxOy EGFET sensor for 1 ng/ml cTnI antigen concentration in 0.01 mM PBS buffer....... 101
Figure 5-4 Transfer characteristics (IDS-VREF) of the InZnxOy based EGFET biosensor for the detection of cardiac troponin (cTnI) in PBS buffer solution...... 101
Figure 5-5 Reference voltage shift as a function of cTnI antigen concentration calibrated in 0.01 mM PBS 7.4..... 102

Table captions
Table 1-1 List of cardiac troponin biomarkers and their detection methods with their sensitivity 35
Table 3-1 A comparative analysis of fabrication method and sensing performance of our RuOx EGFET sensor with previously reported EGFET pH sensors. 76
Table 3-2 Analytical characteristics of previously reported EGFET-based glucose sensors compared to our RuOx EGFET glucose one. 80
References
[1] S. Chen and M. H. Shamsi, “Biosensors-on-chip : a topical review,” J. Micromech. Microeng., vol. 27, no. 8, pp. 083001-1-083001–15, 2017.
[2] Y. Syu, W. Hsu, and C. Lin, “Review — Field-effect transistor biosensing : Devices and clinical applications,” ECS J. of Solid State Sci. Technol., vol. 7, no. 7, pp. Q3196–Q3207, 2018.
[3] B. D. Malhotra, S. Srivastava, Md. A. Ali, and C. Singh, “Nanomaterial-based biosensors for food toxin detection,” Appl. Biochem. Biotechnol., vol. 174, pp. 880–896, 2014.
[4] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets : A review,” Anal. Chim. Acta, vol. 620, no. 1–2, pp. 8–26, 2008.
[5] V. C. Diculescu, A. C. Paquim, and A. M. O. Brett, “Electrochemical DNA sensors for detection of DNA damage,” Sensors, vol. 5, no. 6, pp. 377–393, 2005.
[6] S. Roy and Z. Gao, “Nanostructure-based electrical biosensors,” Nano Today, vol. 4, no. 4, pp. 318–334, 2009.
[7] R. Gabl, H. D. Feucht, H. Zeininger, G. Eckstein, M. Schreiter, R. Primig, D. Pitzer, and W. Wersing “First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles,” Biosens. Bioelectron., vol. 19, no. 6, pp. 615–620, 2004.
[8] K. Länge, B. E. Rapp, and M. Rapp, “Surface acoustic wave biosensors : a review,” Anal Bioanal Chem, vol. 391, no. 5, pp. 1509–1519, 2008.
[9] E. L. Que and C. J. Chang, “Responsive magnetic resonance imaging contrast agents as chemical sensors for metals in biology and medicine,” Chem. Soc. Rev., vol. 39, no. 1, pp. 51–60, 2010.
[10] L. Jiang and W. Zhang, “Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing,” Electroanalysis, vol. 21, no. 8, pp. 988–993, 2009.
[11] L. Alfonta, A. Bardea, O. Khersonsky, E. Katz, and I. Willner, “Chronopotentiometry and Faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports : routes for enzyme sensors , immunosensors and DNA sensors,” Biosens. Bioelectron., vol. 16, no. 9–12, pp. 675–687, 2001.
[12] C. Ion, J. C. Moutet, A. Pailleret, A. Popescua, E. S. Aman, E. Siebert, and E. M. Ungureanu “Electrochemical recognition of metal cations by poly ( crown ether ferrocene ) films investigated by cyclic voltammetry and electrochemical impedance spectroscopy,” J. Electroanal. Chem., vol. 464, no. 1, pp. 24–30, 1999.
[13] D. Semenovaa, A. Zubova, Y. E. Silinab, L. Michelic, M. Koch, and K. V. Gernaey, “Mechanistic modeling of cyclic voltammetry : A helpful tool for understanding biosensor principles and supporting design optimization,” Sensors Actuators B Chem., vol. 259, pp. 945–955, 2018.
[14] M. Kaisti, “Detection principles of biological and chemical FET sensors,” Biosens. Bioelectron., vol. 98, pp. 437–448, 2017.
[15] C. Jimenez-jorquera, J. Orozco, and A. Baldi, “ISFET based microsensors for environmental monitoring,” Sensors, vol. 10, no. 1, pp. 61–83, 2010.
[16] P. Bergveld, “Development of an Ion-sensitive solid-State device for neurophysiological measurements,” IEEE Trans. Biomed. Eng., vol. 17, no. 1, pp. 70–71, 1970.
[17] J. T. Mabeck and G. G. Malliaras, “Chemical and biological sensors based on organic thin-film transistors,” Anal. Bioanal. Chem., vol. 384, no. 2, pp. 343–353, 2006.
[18] D. G. Pijanowska and W. Torbicz, “pH-ISFET based urea biosensor,” Sensors Actuators B Chem., vol. 44, no. 1–3, pp. 370–376, 1997.
[19] Z. Dong, U. C. Wejinya, and S. N. S. Chalamalasetty, “Development of CNT-ISFET based pH sensing system using atomic force microscopy,” Sensors Actuators A Phys., vol. 173, no. 1, pp. 293–301, 2012.
[20] S. Koch, P. Woias, L. K. Meixner, S. Drost, and H. Wolf, “Protein detection with a novel ISFET-based zeta potential analyzer,” Biosens. Bioelectron., vol. 14, no. 4, pp. 413–421, 1999.
[21] N. Moser, J. Rodriguez-manzano, T. S. Lande, and P. Georgiou, “A scalable ISFET sensing and memory array with sensor auto-calibration for on-chip real-time DNA detection,” IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 2, pp. 390–401, 2018.
[22] C. Toumazou, T. Sri, L. Kok, P. Georgiou, T. Sri, and K. T. Lim, “A new era of semiconductor genetics using ion-sensitive field-effect transistors : the gene-sensitive integrated cell,” Philos. Trans. R. Soc. A, vol. 272, no. 2012, pp. 1–12, 2014.
[23] C. Toumazou, L. M. Shepherd, S. C Reed, G. I Chen, A. Patel, D. M Garner, C. J. A Wang, C. P. Ou, K. A. Desai, P. Athanasiou. Hua Bai, I. M. Q. Brizido, B. Caldwell, D. C. Alford, P. Georgiou, K. S. Jordan, J. C. Joyce, M. L. Mura, D. Morley, S. Sathyavruthan, S. Temelso, R. E. Thomas, and L. Zhan “Simultaneous DNA amplification and detection using a pH-sensing semiconductor system,” Nat. Methods, vol. 10, no. 7, pp. 641–646, 2013..
[24] K. B. Walsh, N. DeRoller, Y. Zhu, and G. Koley, “Application of ion-sensitive field effect transistors for ion channel screening,” Biosens. Bioelectron., vol. 54, pp. 448–454, 2014.
[25] J. M. Rothberg and W. Hinz, “An integrated semiconductor device enabling non-optical genome sequencing,” Nature, vol. 475, no. 7356, pp. 348–352, 2011.
[26] J. Van Der Spiegel, I. Lauks, P. Chan, and D. Bbic, “The extended gate chemically sensitive field effect transistor as multi-species microprobe,” Sensors and Actuators, vol. 4, no. C, pp. 291–298, 1983.
[27] J. C. Chou and C. W. Chen, “Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs,” IEEE Sens. J., vol. 9, no. 3, pp. 277–284, 2009.
[28] G. F. L. Maiolo, S. Mirabella, F. Maita, A. Alberti, A. Minotti, V. Strano, A. Pecora, and Y. S. Diamand, “Flexible pH sensors based on polysilicon thin film transistors and ZnO nanowalls,” Appl. Phys. Lett., vol. 105, no. 9, pp. 093501-1-093501–4, 2014.
[29] Y. Qin, H. Kwon, M. M. R. Howlader, and M. J. Deen, “Microfabricated electrochemical pH and free chlorine sensors for water quality monitoring: recent advances and research challenges,” RSC Adv., vol. 5, pp. 69086–69109, 2015.
[30] T. M. Pan, Y. Huang, and J. L. Her, “Sensing and impedance characteristics of YbTaO4 sensing membranes,” Sci. Rep., vol. 8, no. 12902, pp. 1–11, 2018.
[31] P. Bergveld, “Thirty years of ISFETOLOGY. What happened in the past 30 years and what may happen in the next 30 years,” Sens. Actuators B Chem., vol. 88, no. 1, pp. 1–20, 2003.
[32] M. W. Shinwari, M. J. Deen, and D. Landheer, “Study of the electrolyte-insulator-semiconductor field-effect transistor ( EISFET ) with applications in biosensor design,” Microelectron. Reliab., vol. 47, no. 12, pp. 2025–2057, 2007.
[33] L. Bousse, N. F. De Rooij, and P. Bergveld, “Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface,” IEEE Trans. Electron Devices, vol. 30, no. 10, pp. 1263–1270, 1983.
[34] H. J. Butt, K. Graf, and M. Kappl, The Physics and Chemistry of Interfaces. Berlin: WileyVCH, 2003.
[35] K. Shoorideh and C. O. Chui, “Optimization of the sensitivity of FET-based biosensors via biasing and surface charge engineering,” IEEE Trans. Electron Devices, vol. 59, no. 11, pp. 3104–3110, 2012.
[36] D. E. Yates, S. Levine, and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” J. Chem. Soc. Faraday Trans., vol. 70, pp. 1807–1818, 1974.
[37] C. D. Fung, P. W. Cheung, and W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor,” IEEE Trans. Electron Devices, vol. ED-33, no. 1, pp. 8–18, 1986.
[38] S. Nakata, T. Arie, S. Akita, and K. Takei, “Wearable, flexible, and multifunctional healthcare device with an ISFET chemical sensor for simultaneous sweat pH and skin temperature monitoring,” ACS Sensors, vol. 2, no. 3, pp. 443–448, 2017.
[39] Y. Yamamoto, S. Harada, D. Yamamoto, W. Honda, and T. Arie, “Printed multifunctional flexible device with an integrated motion sensor for health care monitoring,” Sci. Adv., vol. 2, no. 11, pp. 1–8, 2016.
[40] A. J. Bandodkar, I. Jeerapan, and J. Wang, “Wearable chemical sensors: present challenges and future prospects,” ACS Sensors, vol. 1, no. 5, pp. 464–482, 2016.
[41] Y. Yang, X. Yang, Y. Tan, and Q. Yuan, “Recent progress in flexible and wearable bio-electronics based on nanomaterials,” Nano Res., vol. 10, no. 5, pp. 1560–1583, 2017.
[42] A. Economou, C. Kokkinos, and M. Prodromidis, “Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing,” Lab Chip, vol. 18, no. 13, pp. 1812–1830, 2018.
[43] A. Weltin, J. Kieninger, and G. A. Urban, “Microfabricated, amperometric, enzyme-based biosensors for in vivo applications,” Anal. Bioanal. Chem., vol. 408, no. 17, pp. 4503–4521, 2016.
[44] A. E. Danks, S. R. Hall, and Z. Schnepp, “The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis,” Mater. Horizons, vol. 3, no. 2, pp. 91–112, 2016.
[45] S. Esposito, “Traditional sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts,” Materials, vol. 12, no. 668, pp. 1–25, 2019.
[46] T. M. Pan, and C. Y. Tan, “Influence of praseodymium content and postdeposition annealing on the structural and sensing characteristics of PrTixOy sensing films using the sol–gel spin-coating method,” J. Mater. Chem. C, vol. 4, no. 31, pp. 7436–7442, 2016.
[47] S. P. Bag, B. S. Lou, J. L. Her, S. T. Pang, and T. M. Pan, “Structural and sensing properties of sol–gel synthesized Ce2(Zr1 − xTix)Oy sensing films for pH sensors,” IEEE Trans. Electron Devices, vol. 64, no. 9, pp. 3971–3975, 2017.
[48] T. M. Pan, and C. Y. Tan, “Study of structural properties and sensing performance of high performance sol-gel synthesized CeTixOy sensing membranes,” Electrochim. Acta, vol. 269, pp. 686–693, 2018.
[49] S. P. Bag, P. Garu, J. L. Her, B. S. Lou, and T. M. Pan, “High performance sol–gel synthesized Ce0.9Sr0.1(Zr0.53Ti0.47)O4 sensing membrane for a solid-state pH sensor,” RSC Adv., vol. 8, no. 38, pp. 21210–21213, 2018.
[50] W. Huang, H. Cao, S. Deb, M. Chiao, and J. C. Chiao, “A flexible pH sensor based on the iridium oxide sensing film,” Sensors Actuators A Phys., vol. 169, no. 1, pp. 1–11, 2011.
[51] P. D. Batista and M. Mulato, “ZnO extended-gate field-effect transistors as pH sensors,” Appl. Phys. Lett., vol. 87, no. 14, pp. 143508–1–143508–3, 2005.
[52] S. Palit, B. S. Lou, J. L. Her, S. T. Pang, and T. M. Pan, “Impact of Sn content on structural properties and sensing performance of InSnxOy thin film on flexible substrate for EGFET pH sensors,” J. of The Electrochem. Soc., vol. 166, no. 6, pp. 407–413, 2019.
[53] T. M. Pan, and K. M. Liao, “Influence of oxygen content on the structural and sensing characteristics of Y2O3 sensing membrane for pH-ISFET,” Sensors Actuators B Chem., vol. 128, no. 1, pp. 245–251, 2007.
[54] S. Yang, G. Li, Y. Wang, G. Wang, and L. Qu, “Amperometric L-cysteine sensor based on a carbon paste electrode modified with Y2O3 nanoparticles supported on nitrogen-doped reduced graphene oxide,” Microchim. Acta, vol. 183, no. 4, pp. 1351–1357, 2016.
[55] K. Jung, D. Yang, C. Park, C. Park, and J. Choi, “Effects of the addition of ZnO and Y2O3 on the electrochemical characteristics of a Ni(OH)2 electrode in nickel - metal hydride secondary batteries,” Int. J. Hydrogen Energy, vol. 35, no. 23, pp. 13073–13077, 2010.
[56] B. Ju, X. Wang, C. Wu, X. Yang, H. Shu, Y. Bai, and W. Wen, “Electrochemical performance of the graphene / Y2O3 / LiMn2O4 hybrid as cathode for lithium-ion battery,” J. Alloys Compd., vol. 584, pp. 454–460, 2014.
[57] S. Kumar, S. Panwar, S. Kumar, S. Augustine, and B. D. Malhotra, “Biofunctionalized nanostructured yttria modified non-invasive impedometric biosensor for efficient detection of oral cancer,” Nanomaterials, vol. 9, no. 1190, pp. 1–13, 2019.
[58] T. Tsutsumi, “Dielectric properties of Y2O3thin films prepared by vacuum evaporation,” Jpn. J. Appl. Phys., vol. 9, no. 7, pp. 735–739, 1970.
[59] C. Martínez-sánchez, F. Montiel-gonzález, and V. Rodríguez-gonzález, “Electrochemical sensing of acetaminophen using a practical carbon paste electrode modified with a graphene oxide- Y2O3 nanocomposite,” J. Taiwan Inst. Chem. Eng., vol. 96, pp. 382–389, 2019.
[60] M. H. Kim, J. M. Baik, S. J. Lee, H. Y. Shin, J. Lee, S. Yoon, G. D. Stucky, M. Moskovits, and A. M. Wodtke “Growth direction determination of a single RuO2 nanowire by polarized Raman spectroscopy,” Appl. Phys. Lett., vol. 96, no. 21, pp. 213108-1-213108–3, 2010.
[61] Y. L. Chueh, C. H. Hsieh, M. T. Chang, L. J. Chou, C. S. Lao, J. H. Song, J. Y. Gan, and Z. L. Wang “RuO2 nanowires and RuO2/TiO2 core/shell nanowires : from synthesis to mechanical,optical, electrical, and photoconductive properties,” Adv. Mater., vol. 19, no. 1, pp. 143–149, 2007.
[62] A. Fog, and R. P. Buck, “Electronic semiconducting oxides as pH sensors,” Sensors and Actuators, vol. 5, no. 2, pp. 137–146, 1984.
[63] S. Huang, Y. Jin, Z. Su, Q. Jin, and J. Zhao, “Performance of surface renewable pH electrodes based on RuO2–graphite–epoxy composites,” Anal. Methods, vol. 9, no. 10, pp. 1650–1657, 2017.
[64] V. Vukojevića, S. Djurdjićb, M. Ognjanovićc, B. Antićc, K. Kalcherd, J. Mutićb, and D. M. Stanković “RuO2/graphene nanoribbon composite supported on screen printed electrode with enhanced electrocatalytic performances toward ethanol and NADH biosensing,” Biosens. Bioelectron., vol. 117, pp. 392–397, 2018.
[65] Y. Peng and Z. Gao, “Amplified detection of microRNA based on ruthenium oxide nanoparticle- initiated deposition of an insulating film,” Anal. Chem., vol. 83, no. 3, pp. 820–827, 2011.
[66] H. Lee, Y. Kim, A. Yu, D. Jin, A. Jo, Y. Lee, M. H. Kim, and C. Lee “An efficient electrochemical sensor driven by hierarchical hetero nanostructures consisting of RuO2 nanorods on WO3 nanofibers for detecting biologically relevant molecules,” sensors, vol. 19, no. 3295, pp. 1–12, 2019.
[67] Y. B. Xiao, S. M. Kong, E. H. Kim, and C. Won, “Characteristics of indium zinc oxide thin films prepared by direct current magnetron sputtering for flexible solar cells,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 1, pp. 264–269, 2011.
[68] L. Gomes, A. Marques, A. Branco, J. Araújo, M. Simões, S. Cardoso, F. Silva, I. Henriques, C. A. T. Laia, and C. Costa “IZO deposition by RF and DC sputtering on paper and application on flexible electrochromic devices,” Displays, vol. 34, no. 4, pp. 326–333, 2013.
[69] N. Liu, Y. H. Liu, P. Feng, L. Q. Zhu, Y. Shi, and W. Qing, “Enhancing the pH sensitivity by laterally synergic modulation in dual-gate electric- double-layer transistors,” Appl. Phys. Lett., vol. 073507, no. 1, pp. 073507-1-073507–4, 2015.
[70] J. Jung, S. J. Kim, T. S. Jung, J. Na, D. H. Yoon, M. M. Sabri, and H. J. Kim “Label-free flexible DNA biosensing system using low-temperature solution-processed In-Zn-O thin-film transistors,” IEEE Trans. Electron Devices, vol. 64, no. 2, pp. 515–520, 2017.
[71] N. Liu, L. Q. Zhu, P. Feng, C. J. Wan, Y. H. Liu, Y. Shi and Q.wan, “Flexible sensory platform based on oxide-based neuromorphic transistors,” Sci. Rep., vol. 5, pp. 1–9, 2015.
[72] R. A. Gottlieb, and A. Dosanjh, “Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells : Possible relevance to cystic fibrosis,” Proc. Natl. Acad. Sci. USA, vol. 93, no. 8, pp. 3587–3591, 1996.
[73] M. Miksa, H. Komura, R. Wu, K. G. Shah, and P. Wang, “A novel method to determine the engulfment of apoptotic cells by macrophages using pH rodosuccinimidylester,” J. Immunol. Methods, vol. 342, no. 1–2, pp. 71–77, 2009.
[74] C. E. Lue, J. C. Wang, D. G. Pijanowska, C. M. Yang, I. S. Wang H. C. Lee, and C. S. Lai “Hysteresis effect on traps of Si3N4 sensing membranes for pH difference sensitivity,” Microelectron. Reliab., vol. 50, no. 5, pp. 738–741, 2010.
[75] J. C. Chou and C. Y. Weng, “Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET,” Mater. Chem. Phys., vol. 71, no. 2, pp. 120–124, 2001.
[76] C. Yang, C. Lai, T. Lu, T. Wang, and D. G. Pijanowska, “Drift and hysteresis effects improved by RTA treatment on hafnium oxide in pH-sensitive applications,” J. Electrochem. Soc., vol. 155, no. 11, pp. J326–J330, 2008.
[77] M. Chen, Y. Jin, X. Qu, Q. Jin, and J. Zhao, “Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment,” Sensors Actuators B Chem., vol. 192, pp. 399–405, 2014.
[78] J. R. Siqueira, M. H. Abouzar, A. Poghossian, V. Zucolotto, O. N. Oliveira, and M. J. Schöning, “Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer / carbon nanotube multilayer,” Biosens. Bioelectron., vol. 25, no. 2, pp. 497–501, 2009.
[79] J. Y. Oh, H. Jang, W. Cho, and M. S. Islam, “Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane,” Sensors Actuators B Chem., vol. 171–172, pp. 238–243, 2012.
[80] Y. H. Lin, S. H. Wang, M. H. Wu, T.-M. Pan, C.-S. Lai, J.-D. Luo, and C. C. Chiou “Integrating solid-state sensor and microfluidic devices for glucose , urea and creatinine detection based on enzyme-carrying alginate microbeads,” Biosens. Bioelectron., vol. 43, pp. 328–335, 2013.
[81] C. H. Kao, H. Chen, M. L. Lee, C. C. Liu, H.-Y. Ueng, Y. C. Chu, C. B. Chen, and K. M. Chang “Effects of N2 and O2 annealing on the multianalyte biosensing characteristics of CeO2-based electrolyte–insulator–semiconductor structures,” Sensors Actuators B Chem., vol. 194, pp. 503–510, 2014.
[82] M. S. Veeramani, K. P. Shyam, N. P. Ratchagar, A. Chadha, and E. Bhattacharya, “Miniaturised silicon biosensors for the detection of triglyceride in blood serum,” Anal. Methods, vol. 6, no. 6, pp. 1728–1735, 2014.
[83] J. Wang, P. Yang, T. Hsieh, and P. Juan, “Ionic pH and glucose sensors fabricated using hydrothermal ZnO nanostructures,” Jpn. J. Appl. Phys., vol. 55, no. 1, pp. 01AE16-1-01AE16-7, 2016.
[84] N. C. S. Vieira, A. Figueiredo, A. A. A. De Queiroz, V. Zucolotto, and F. E. G. Guimarães, “Self-assembled films of dendrimers and metallophthalocyanines as FET-based glucose biosensors,” Sensors, vol. 11, no. 10, pp. 9442–9449, 2011.
[85] Y. H. Lin, C. P. Chu, C. F. Lin, H. H. Liao, H. H. Tsai, and Y. Z. Juang, “Extended-gate field-effect transistor packed in micro channel for glucose, urea and protein biomarker detection,” Biomed. Microdevices, vol. 17, no. 111, pp. 1–9, 2015.
[86] C. T. Lee, Y. S. Chiu, S. C. Ho, and Y.-J. Lee, “Investigation of a photoelectrochemical passivated ZnO-based glucose biosensor,” Sensors, vol. 11, no. 5, pp. 4648–4655, 2011.
[87] M. Fathollahzadeh, M. Hosseini, M. Norouzi, A. Ebrahimi, and M. Fathipour, “Immobilization of glucose oxidase on ZnO nanorods decorated electrolyte-gated field effect transistor for glucose detection,” J. Solid State Electrochem., vol. 22, no. 1, pp. 61–67, 2018.
[88] M. Reiter, R. Twerenbold, T. Reichlin, P. Haaf , F. Peter, J. Meissner, W. Hochholzer, C. Stelzig, M. Freese, C. Heinisch , T. Breidthardt, H. Freidank, K. Winkler, I. Campodarve, J. Gea, and C. Mueller “Early diagnosis of acute myocardial infarction in the elderly using more sensitive cardiac troponin assays,” Eur. Heart J., vol. 32, no. 11, pp. 1379–1389, 2011.
[89] K. Thygesen, J. S. Alpert, A. S. Jaffe, M. L. Simoons, B. R. Chaitman, and H. D. White, “Third universal definition of myocardial infarction,” Eur. Heart J., vol. 33, no. 20, pp. 2551–2567, 2012.
[90] N. R. Shanmugam, S. Muthukumar, and S. Prasad, “Ultrasensitive and low-volume point-of-care diagnostics on flexible strips – a study with cardiac troponin biomarkers,” Sci. Rep., vol. 6:33423, pp. 1–10, 2016.
[91] A. E. Stillman, M. Oudkerk, D. Bluemke, J. Bremerich, F. P. Esteves, E. V. Garcia, M. Gutberlet, W. G. Hundley, M. J. Herold, D. Kuijpers, R. K. Kwong, E. Nagel, S. Lerakis, J. Oshinski, J. F. Paul, R. Underwood, B. J. Wintersperger, and M. R. Rees “Assessment of acute myocardial infarction : current status and recommendations from the north american society for cardiovascular imaging and the european society of cardiac radiology,” Int J Cardiovasc Imaging, vol. 27, no. 1, pp. 7–24, 2011.
[92] S. Yeon, Y. Duk, K. Kim, S. Sik, and H. C. Yoon, “A fluoro-microbead guiding chip for simple and quantifiable immunoassay of cardiac troponin I ( cTnI ),” Biosens. Bioelectron., vol. 26, no. 9, pp. 3818–3824, 2011.
[93] C. A. Marquette, F. Bouteille, B. P. Corgier, A. Degiuli, and L. J. Blum, “Disposable screen-printed chemiluminescent biochips for the simultaneous determination of four point-of-care relevant proteins,” Anal. Bioanal. Chem., vol. 393, no. 4, pp. 1191–1198, 2009.
[94] J. Wei, Y. Mu, D. Song, X. Fang, X. Liu, L. Bu, H. Zhang,c G. Zhang, J. Ding, W. Wang, Q. Jin, and G. Luo “A novel sandwich immunosensing method for measuring cardiac troponin I in sera,” Anal. Biochem., vol. 321, no. 2, pp. 209–216, 2003.
[95] J.-F. Masson, L. Obando, S. Beaudoin, and K. Booksh, “Sensitive and real-time fiber-optic-based surface plasmon resonance sensors for myoglobin and cardiac troponin I,” Talanta, vol. 62, no. 5, pp. 865–870, 2004.
[96] I. Cho, E. Paek, Y. Kim, J. Kim, and S. Paek, “Chemiluminometric enzyme-linked immunosorbent assays ( ELISA ) -on-a-chip biosensor based on cross-flow chromatography,” Anal. Chim. Acta, vol. 632, no. 2, pp. 247–255, 2009.
[97] H. A. Katus, S. Looser, K. Hallermayer, A. Remppis, T. Scheffold, A. Borgya, U. Essig, and Ursula Geub “Development and in vitro characterization of a new immunoassay of cardiac troponin T,” Clin. Chem., vol. 38, no. 3, pp. 386–393, 1992.
[98] M. M. Bardorff, K. Hallermayer, A. Schroder, C. Ebert, A. Borgya, W. Gerhardt, A. Remppis, J. Zehelein, and H. A. Katus “Improved troponin T ELISA specific for cardiac troponin T isoform : assay development and analytical and clinical validation,” Clin. Chem., vol. 43, no. 3, pp. 458–466, 1997.
[99] W. Wu, Z. Bian, W. Wang, W. Wang, and J. Zhu, “PDMS gold nanoparticle composite film-based silver enhanced colorimetric detection of cardiac troponin I,” Sensors Actuators B Chem., vol. 147, no. 1, pp. 298–303, 2010.
[100] M. A. Daubert, and A. Jeremias, “The utility of troponin measurement to detect myocardial infarction : review of the current findings,” Vasc. Health Risk Manag., vol. 6, no. 1, pp. 691–699, 2010.
[101] A. E. Kitabachi, G. E. Umpierrez, J. M. Miles, and J. N. Fisher, “Hyperglycemic crises in adult patients with diabetes,” Diabetes Care, vol. 32, no. 7, pp. 1335–1343, 2009.
[102] H. Seo, C. Kim, B. Sohn, T. Yeow, and M. Haskard, “ISFET glucose sensor based on a new principle using the electrolysis of hydrogen peroxide,” Sensors Actuators B Chem., vol. 40, no. 1, pp. 1–5, 1997.
[103] M. J. S. José, R. Siqueira, Jr., D. Molinnus, S. Beging, “Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection,” Anal. Chem., vol. 86, no. 11, pp. 5370–5375, 2014.
[104] J. L. Her, C. W. Lin, K. Y. Chang, and T. M. Pan, “Label-free detection of creatinine using a disposable poly-N-isopropylacrylamide as an encapsulating creatinine deiminase based Eu2Ti2O7 electrolyte-insulator-semiconductors,” Int. J. Electrochem. Sci., vol. 7, pp. 387–404, 2012.
[105] T. Lin, D. Kekuda, and C. Chu, “Label-free detection of DNA using novel organic-based electrolyte-insulator-semiconductor,” Biosens. Bioelectron., vol. 25, no. 12, pp. 2706–2710, 2010.
[106] N. Bhalla, M. Di Lorenzo, G. Pula, and P. Estrela, “Protein phosphorylation detection using dual-mode field-effect devices and nanoplasmonic sensors,” Sci. Rep., vol. 5, pp. 1–8, 2015.
[107] A. Das, D. H. Ko, C.-H. Chen, L.-B. Chang, C.-S. Lai, F.-C. Chu L. Chow and R. M. Lin “Highly sensitive palladium oxide thin film extended gate FETs as pH sensor,” Sensors Actuators B Chem., vol. 205, pp. 199–205, 2014.
[108] L. Manjakkal, B. Synkiewicz, K. Zaraska, K. Cvejin, J. Kulawik, and D. Szwagierczak, “Development and characterization of miniaturized LTCC pH sensors with RuO2 based sensing electrodes,” Sensors Actuators B Chem., vol. 223, pp. 641–649, 2016.
[109] J. C. Chou and J. L. Chiang, “Ion sensitive field effect transistor with amorphous tungsten trioxide gate for pH sensing,” Sensors Actuators B Chem., vol. 62, no. 2, pp. 81–87, 2000.
[110] Y. Cheng, P. Xiong, C. S. Yun, G. F. Strouse, J. P. Zheng, R. S. Yang, and Z. L. Wang “Mechanism and optimization of pH sensing using SnO2 nanobelt field effect transistors,” Nano Lett., vol. 8, no. 12, pp. 4179–4184, 2008.
[111] T. M. Pan, C. W. Wang, and S. T. Pan, “High-performance electrolyte–insulator– semiconductor pH sensors using high-κ CeO2 sensing films,” IEEE Electron Device Lett., vol. 36, no. 11, pp. 1195–1197, 2015.
[112] T. M. Pan, C. W. Wang, S. Mondal, and Y. H. Chang, “Effect of titanium content on the sensing and impedance characteristics of high‑κ TbTixOy electrolyte−insulator−semiconductor pH sensors,” J. Phys. Chem. C, vol. 118, no. 8, pp. 4501–4508, 2014.
[113] M. Gurvitch, L. Manchanda, and M. Gibson, “Study of thermally oxidized yttrium films on silicon,” Appl. Phys. Lett., vol. 51, no. 12, pp. 919–921, 1987.
[114] G. Alarcon-Flores, M. Aguilar-Frutis, M. Garcı´a-Hipolito, J. Guzma´n-Mendoza, M. A. Canseco, and C. Falcony, “Optical and structural characteristics of Y2O3 thin films synthesized from yttrium acetylacetonate,” J. Mater. Sci., vol. 43, no. 10, pp. 3582–3588, 2008.
[115] J. Zhu, Y. Zhu, W. Shen, Y. Wang, J. Han, G. Tian, P. Lei, B. Dai “Growth and characterization of yttrium oxide films by reactive magnetron sputtering,” Thin Solid Films, vol. 519, no. 15, pp. 4894–4898, 2011.
[116] E. K. Evangelou, C. Wiemer, and M. Fanciulli, “Electrical and structural characteristics of yttrium oxide films deposited by rf-magnetron sputtering on n-Si,” J. Appl. Phys., vol. 94, no. 1, pp. 318–325, 2003.
[117] T. M. Pan and C. J. Chang, “High-performance poly-silicon TFTs with high- k Y2O3 gate dielectrics,” Semicond. Sci. Technol., vol. 26, no. 7, pp. 1–6, 2011.
[118] A. F. Andreeva, A. G. Sisonyuk, and E. G. Himich, “Growth Conditions , Optical and Dielectric Properties of Yttrium Oxide Thin Films,” Phys. Status Solidi, vol. 145, no. 2, pp. 441–446, 1994.
[119] S. Huang, Q. Lu, and C. Wang, “Y2O3 – BaO – Y2O3 – B2O3 -Al2O3 glass sealant for solid oxide fuel cells,” J. Alloys Compd., vol. 509, no. 11, pp. 4348–4351, 2011.
[120] R. H. Hong, D. S. Wuu, and J. W. Yu, “An electroluminescent device using multi-barrier Y2O3 layers incorporated into ZnS:Mn phosphor layer,” Mater. Chem. Phys., vol. 51, no. 1, pp. 11–14, 1997.
[121] M. A. Hongbo, Z. Rongbin, H. Sifu, C. Weiqing, and S. Qiujie, “Ni/Y2O3-Al2O3 catalysts for hydrogen production from steam reforming of ethanol at low temperature,” J. Rare Earths, vol. 30, no. 7, pp. 683–690, 2012.
[122] Y. Pengfei, Z. Kan, H. Hao, W. Mao, L. Quan, and Z. Wei, “Oxygen vacancies dependent phase transition of Y2O3 films,” Appl. Surf. Sci., vol. 410, pp. 470–478, 2017.
[123] M. Ling, C. Haur, H. Chen, C. Yu, and Y. Teng, “The structural and electrical comparison of Y2O3 and Ti-doped Y2O3 dielectrics,” Ceram. Int., vol. 43, no. 3, pp. 3043–3050, 2017.
[124] P. De Rouffignac, J. Park, and R. G. Gordon, “Atomic layer deposition of Y2O3 thin films from yttrium tris (N,N′-diisopropylacetamidinate) and water,” Chem. Mater., vol. 17, no. 19, pp. 4808–4814, 2005.
[125] X. J. Wang, L. D. Zhang, J. P. Zhang, G. He, M. Liu, and L. Q. Zhu, “Effects of post-deposition annealing on the structure and optical properties of Y2O3 thin films,” Mater. Lett., vol. 62, no. 26, pp. 4235–4237, 2008.
[126] S. A. Barve, Jagannath, N. Mithal, M. N. Deo, A. Biswas, R. Mishra R. Kishore, B. M. Bhanage, L. M. Gantayet, and D. S. Patil “Effects of precursor evaporation temperature on the properties of the yttrium oxide thin films deposited by microwave electron cyclotron resonance plasma assisted metal organic chemical vapor deposition,” Thin Solid Films, vol. 519, no. 10, pp. 3011–3020, 2011.
[127] G. Atanassov, R. Thielsch, and D. Popov, “Optical properties of TiO2, Y2O3 and CeO2 thin films deposited by electron beam evaporation,” Thin Solid Films, vol. 223, no. 2, pp. 288–292, 1993.
[128] M. Copel, “Selective desorption of interfacial SiO2,” Appl. Phys. Lett., vol. 82, no. 10, pp. 1580–1582, 2003.
[129] T. M. Pan, C. W. Wang, and C. Y. Chen, “Structural properties and sensing performance of CeYxOy sensing films for electrolyte – insulator – semiconductor pH sensors,” Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017.
[130] S. Karamat, C. Ke, U. Y. Inkaya, R. Akram, I. Yildiz, and S. S. Zaman, “Graphene/SrTiO3 hetero interface studied by X-ray photoelectron spectroscopy,” Prog. Nat. Sci. Mater. Int., vol. 26, no. 4, pp. 422–426, 2016.
[131] E. J. Rubio, V. V Atuchin, V. N. Kruchinin, L. D. Pokrovsky, I. P. Prosvirin, and C. V Ramana, “Electronic Structure and Optical Quality of Nanocrystalline Y2O3 Film Surfaces and Interfaces on Silicon,” J. Phys. Chem. C, vol. 118, no. 25, pp. 13644–13651, 2014.
[132] S. Jamasb, S. D. Collins, and R. L. Smith, “A physical model for threshold voltage instability in Si3N4 -gate H + sensitive FET’s (pH ISFET’s),” IEEE Trans. Electron Devices, vol. 45, no. 6, pp. 1239–1245, 1998.
[133] J. J. Chambers, and G. N. Parsons, “Physical and electrical characterization of ultrathin yttrium silicate insulators on silicon,” J. Appl. Phys., vol. 90, no. 2, pp. 918–933, 2001.
[134] V. Jankovic and J. P. Chang, “HfO2 and ZrO2–based microchemical ion sensitive field effect transistor (ISFET ) sensors : simulation & experiment,” J. of The Electrochem. Soc., vol. 158, no. 10, pp. P115–P117, 2011.
[135] N. Kumar, J. Kumar, and S. Panda, “Low temperature annealed amorphous indium gallium zinc oxide ( a-IGZO ) as a pH sensitive layer for applications in field effect based sensors,” AIP Adv., vol. 5, no. 6, pp. 067123-1-067123–8, 2015.
[136] N. Kumar, J. Kumar, and S. Panda, “Sensitivity enhancement mechanisms in textured dielectric based electrolyte-insulator-semiconductor ( EIS ) sensors,” ECS J. of Solid State Sci. Technol., vol. 4, no. 3, pp. N18–N23, 2015.
[137] L. Mu, I. A. Droujinine, N. K. Rajan, S. D. Sawtelle, and M. A. Reed, “Direct, rapid, and label-free detection of enzyme − substrate interactions in physiological buffers using CMOS-compatible nanoribbon sensors,” Nano Lett., vol. 14, no. 9, pp. 5315–5322, 2014.
[138] J. C. Chou and Y. F. Wang, “Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol – gel method,” Sensors Actuators B Chem., vol. 86, no. 1, pp. 58–62, 2002.
[139] R. A. DeFronzo, E. Ferrannini, L. Groop, R. R. Henry, W. H. Herman, J. J. Holst, F. B. Hu, C. R. Kahn, I. Raz, G. I. Shulman, D. C. Simonson, M. A. Testa, and R. Weiss “Type 2 diabetes mellitus,” Nat. Rev. Dis. Prim., vol. 1, no. 1, pp. 1–23, 2015.
[140] J. Wang, “Electrochemical glucose biosensors,” Chem. Rev., vol. 108, no. 2, pp. 814–825, 2008.
[141] J. Liu, S. Sun, H. Shang, J. Lai, and L. Zhang, “Electrochemical biosensor based on bienzyme and carbon nanotubes incorporated into an Os-complex thin film for continuous glucose detection in human saliva,” Electroanalysis, vol. 28, no. 9, pp. 2016–2021, 2016.
[142] G. Talakatta, M. Sarikhani, J. Muhamed, K. Dhanya, B. S. Somashekar, P. A. Mahesh, N. Sundaresan, P. V. Ravindra “Diabetes induces fibrotic changes in the lung through the activation of TGF-β signaling pathways,” Sci. Rep., vol. 8, no. 1, pp. 1–15, 2018.
[143] M. Fathollahzadeh, M. Hosseini, B. Haghighi, M. Kolahdouz, and M. Fathipour, “Fabrication of a liquid-gated enzyme field effect device for sensitive glucose detection,” Anal. Chim. Acta, vol. 924, pp. 99–105, 2016.
[144] A. Hartono, E. Sanjaya, and R. Ramli, “Glucose sensing using capacitive biosensor based on polyvinylidene fluoride thin film,” Biosensors, vol. 8, no. 1, pp. 1–10, 2018.
[145] V. G. Pahurkar, Y. S. Tamgadge, A. B. Gambhire, and G. G. Muley, “Glucose oxidase immobilized PANI cladding modified fiber optic intrinsic biosensor for detection of glucose,” Sensors Actuators, B Chem., vol. 210, pp. 362–368, 2015.
[146] J. Pei, F. Tian, and T. Thundat, “Novel Glucose Biosensor Based on the Microcantilever,” Anal. Chem., vol. 76, no. 2, pp. 292–297, 2004.
[147] M. M. Rahman, A. J. S. Ahammad, J. H. Jin, S. J. Ahn, and J. J. Lee, “A comprehensive review of glucose biosensors based on nanostructured metal-oxides,” Sensors, vol. 10, no. 5, pp. 4855–4886, 2010.
[148] X. Wang, C. ye Ge, K. Chen, and Y. X. Zhang, “An ultrasensitive non-enzymatic glucose sensors based on controlled petal-like CuO nanostructure,” Electrochim. Acta, vol. 259, pp. 225–232, 2018.
[149] R. Ahmad, N. Tripathy, M.-S. Ahn, K. S. Bhat, T. Mahmoudi, Y. Wang, J. Y. Yoo, D. W. Kwon, H. Y.Yang, and Y. B. Hahn “Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode,” Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017.
[150] Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang, and Y. Lei, “Electrospun Co3O4 nanofibers for sensitive and selective glucose detection,” Biosens. Bioelectron., vol. 26, no. 2, pp. 542–548, 2010.
[151] G. Zeng, W. Li, S. Ci, J. Jia, and Z. Wen, “Highly dispersed NiO nanoparticles decorating graphene nanosheets for non-enzymatic glucose sensor and biofuel cell,” Sci. Rep., vol. 6, pp. 1–8, 2016.
[152] H. Zhu, L. Li, W. Zhou, Z. Shao, and X. Chen, “Advances in non-enzymatic glucose sensors based on metal oxides,” J. Mater. Chem. B, vol. 4, no. 46, pp. 7333–7349, 2016.
[153] R. Adzhri, M. K. Md Arshad, S. C.B. Gopinath, A.R. Ruslinda, M.F.M. Fathil, R.M. Ayub, M. Nuzaihan Mohd Nor, and C.H. Voon, “High-performance integrated field-effect transistor-based sensors,” Anal. Chim. Acta, vol. 917, pp. 1–18, 2016.
[154] H. H. Li, W. S. Dai, J. C. Chou, and H. C. Cheng, “An extended-gate field-effect transistor with low-temperature hydrothermally synthesized SnO 2 nanorods as pH sensor,” IEEE Electron Device Lett., vol. 33, no. 10, pp. 1495–1497, 2012.
[155] B. R. Huang, J. C. Lin, and Y. K. Yang, “ZnO/silicon nanowire hybrids extended-gate field-effect transistors as pH sensors,” J. Electrochem. Soc., vol. 160, no. 6, pp. 78–82, 2013.
[156] M. S. Chae, J. H. Park, H. W. Son, K. S. Hwang, and T. G. Kim, “IGZO-based electrolyte-gated field-effect transistor for in situ biological sensing platform,” Sensors Actuators B Chem., vol. 262, pp. 876–883, 2018.
[157] D. S. Kim, J. E. Park, J. K. Shin, P. K. Kim, G. Lim, and S. Shoji, “An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes,” Sensors Actuators B Chem., vol. 117, no. 2, pp. 488–494, 2006.
[158] G. O. Silva and M. Mulato, “Urea detection using commercial field effect transistors,” ECS J. Solid State Sci. Technol., vol. 7, no. 7, pp. Q3014–Q3019, 2018.
[159] C. P. Chen, A. Ganguly, C. Y. Lu, T. Y. Chen, C. C. Kuo, R. S. Chen, W. H.Tu, W. B. Fischer, K. H. Chen, and L. C. Chen “Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor,” Anal. Chem., vol. 83, no. 6, pp. 1938–1943, 2011.
[160] S. Q. Wang, T. Chinnasamy, M. A. Lifson, F. Inci, and U. Demirci, “Flexible substrate-based devices for point-of-care diagnostics,” Trends Biotechnol., vol. 34, no. 11, pp. 909–921, 2016.
[161] J. C. Lin, B. R. Huang, and Y. K. Yang, “IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors,” Sensors Actuators B Chem., vol. 184, pp. 27–32, 2013.
[162] P. C. Yao, J. L. Chiang, and M. C. Lee, “Application of sol-gel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor,” Solid State Sci., vol. 28, pp. 47–54, 2014.
[163] B. Xu and W. De Zhang, “Modification of vertically aligned carbon nanotubes with RuO2 for a solid-state pH sensor,” Electrochim. Acta, vol. 55, no. 8, pp. 2859–2864, 2010.
[164] P. Y. Kuo and Z. L. Lian, “Noise-cancelling readout circuit to improve the linearity and sensitivity for RuO2 urea biosensor sensing measurement,” Electron. Lett., vol. 55, no. 20, pp. 1076–1078, 2019.
[165] S. C. Tseng, T. Y. Wu, J. C. Chou, Y.-H. Liao, C.-H. Lai, S.-J. Yan, and T. W. Tseng “Investigation of sensitivities and drift effects of the arrayed flexible chloride sensor based on RuO2/GO at different temperatures,” Sensors, vol. 18, no. 632, pp. 1–12, 2018.
[166] M. Li, W. Zhu, F. Marken, and T. D. James, “Electrochemical sensing using boronic acids,” Chem. Commun., vol. 51, no. 78, pp. 14562–14573, 2015.
[167] G. F. Whyte, R. Vilar, and R. Woscholski, “Molecular recognition with boronic acids-applications in chemical biology,” J. Chem. Biol., vol. 6, no. 4, pp. 161–174, 2013.
[168] Y. Uematsu, T. Kajisa, and T. Sakata, “FundamentalCharacteristics of a Glucose Transistor with a Chemically Functional Interface,” ChemElectroChem, vol. 4, no. 9, pp. 2225–2231, 2017.
[169] N. Dunne, M. T. Viggiani, S. Pardo, C. Robinson, and J. L. Parkes, “Accuracy Evaluation of CONTOUR®PLUS Compared With Four Blood Glucose Monitoring Systems,” Diabetes Ther., vol. 6, no. 3, pp. 377–388, 2015.
[170] W. T. Lim, K. R. Cho, and C. H. Lee, “Structural and electrical properties of rf-sputtered RuO2 films having different conditions of preparation,” Thin Solid Films, vol. 348, no. 1, pp. 56–62, 1999.
[171] D. D. Sarma and C. N. R. Rao, “XPES studies of oxides of second- and third-row transition metals including rare earths,” J. Electron Spectros. Relat. Phenomena, vol. 20, no. 1, pp. 25–45, 1980.
[172] E. Emmez, J. Anibal Boscoboinik, S. Tenney, P. Sutter, S. Shaikhutdinov, and H. J. Freund, “Oxidation of the Ru(0001) surface covered by weakly bound, ultrathin silicate films,” Surf. Sci., vol. 646, pp. 19–25, 2016.
[173] N. H. Al-Hardan, M. A. Abdul Hamid, N. M. Ahmed, A. Jalar , R. Shamsudin, N. K. Othman, L. K. Keng, W. Chiu, and H. N. Al-Rawi “High sensitivity pH sensor based on porous silicon (PSi) extended gate field-effect transistor,” Sensors, vol. 16, no. 6, pp. 1–12, 2016.
[174] K. B. Parizi, X. Xu, A. Pal, X. Hu, and H. S. Philip Wong, “ISFET pH Sensitivity: Counter-Ions Play a Key Role,” Sci. Rep., vol. 7, no. 3, pp. 1–10, 2017.
[175] W. Lonsdale, S. P. Shylendra, S. Brouwer, M. Wajrak, and K. Alameh, “Application of ruthenium oxide pH sensitive electrode to samples with high redox interference,” Sensors Actuators B Chem., vol. 273, no. June, pp. 1222–1225, 2018.
[176] P. Kurzweil, “Precious metal oxides for electrochemical energy converters: Pseudocapacitance and pH dependence of redox processes,” J. Power Sources, vol. 190, no. 1, pp. 189–200, 2009.
[177] T. Y. Kim and S. Yang, “Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing,” Sensors Actuators B Chem., vol. 196, pp. 31–38, 2014.
[178] T. M. Pan, C. W. Wang, S. Mondal, and S. T. Pang, “Super-Nernstian sensitivity in microfabricated electrochemical pH sensor based on CeTixOy film for biofluid monitoring,” Electrochim. Acta, vol. 261, pp. 482–490, 2018.
[179] S. Jamasb, S. Collins, and R. L. Smith, “A physical model for drift in pH ISFETs,” Sensors Actuators B Chem., vol. 49, no. 1–2, pp. 146–155, 1998.
[180] C. Kuo, S. Wang, R. Ko, and H. Tseng, “Super-Nernstian pH sensors based on WO3 nanosheets,” Jpn. J. Appl. Phys., vol. 57, no. 4, pp. 04FM09-1-04FM09-7, 2018.
[181] S. Hung, N. Cheng, C. Yang, and Y. Lo, “Investigation of extended-gate field-effect transistor pH sensors based on different temperature-annealed bi-layer MWCNTs-In2O3 films” Nanoscale Res. Lett., vol. 9, no. 502, pp. 1–8, 2014.
[182] Y. C. Wu, S. J. Wu, and C. H. Lin, “High performance ISFET-based pH sensor utilizing low-cost industrial-grade touch panel film as the gate structure,” IEEE Sens. J., vol. 15, no. 11, pp. 6279–6286, 2015.
[183] T. Minami, T. Minamiki, Y. Hashima, D. Yokoyama, T. Sekine, K. Fukuda, D. Kumaki and S. Tokito “An extended-gate type organic field effect transistor functionalised by phenylboronic acid for saccharide detection in water,” Chem. Commun., vol. 50, no. 98, pp. 15613–15615, 2014.
[184] M. P. Nicholls and P. K. C. Paul, “Structures of carbohydrate-boronic acid complexes determined by NMR and molecular modelling in aqueous alkaline media,” Org. Biomol. Chem., vol. 2, no. 10, pp. 1434–1441, 2004.
[185] H. Cao, D. I. Diaz, N. DiCesare, J. R. Lakowicz, and M. D. Heagy, “Monoboronic acid sensor that displays anomalous fluorescence sensitivity to glucose,” Org. Lett., vol. 4, no. 9, pp. 1503–1505, 2002.
[186] J. C. Chou, H. Y. Yang, and C. W. Chen, “Glucose biosensor of ruthenium-doped TiO2 sensing electrode by co-sputtering system,” Microelectron. Reliab., vol. 50, no. 5, pp. 753–756, 2010.
[187] W. L. Tsai, Y. S. Chien, P. Y. Yang, I. C. Lee, K. Y. Wang, and H. C. Cheng, “Laser-unzipped carbon nanotube based glucose sensor for separated structure of enzyme modified field effect transistor,” Sensors Actuators A Phys., vol. 204, pp. 31–36, 2013.
[188] C. H. Kao, H. Chen, L. T. Kuo, J. C. Wang, Y. T. Chen, Y. C. Chu C. Y. Chen, C. S. Lai, S. W. Chang, C. W. Chang “Multi-analyte biosensors on a CF4 plasma treated Nb2O5-based membrane with an extended gate field effect transistor structure,” Sensors Actuators B Chem., vol. 194, pp. 419–426, 2014.
[189] C. W. Liao, J. C. Chou, T. P. Sun, S. K. Hsiung, and J. H. Hsieh, “Preliminary investigations on a glucose biosensor based on the potentiometric principle,” Sensors Actuators B Chem., vol. 123, no. 2, pp. 720–726, 2007.
[190] J. Qi, H. Zhang, Z. Ji, M. Xu, and Y. Zhang, “ZnO nano-array-based EGFET biosensor for glucose detection,” Appl. Phys. A Mater. Sci. Process., vol. 119, no. 3, pp. 807–811, 2015.
[191] J. H. Seo, T. Ling, S. Gong, W. Zhou, A. L. Ma, L. J. Guo, Z. Ma “Fast flexible transistors with a nanotrench structure,” Sci. Rep., vol. 6, no. 24771, pp. 1–9, 2016.
[192] W.Y. Chang, T. H. Fang, and Y. C. Lin, “Physical characteristics of polyimide films for flexible sensors,” Appl. Phys. A Mater. Sci. Process., vol. 92, no. 3, pp. 693–701, 2008.
[193] S. Nakata, M. Shiomi, Y. Fujita, T. Arie, S. Akita, and K. Takei, “A wearable pH sensor with high sensitivity based on a flexible charge-coupled device,” Nat. Electron., vol. 1, no. 11, pp. 596–603, 2018.
[194] Y. S. Rim, S.-H. Bae, H. Chen, J. L. Yang, J. Kim, A. M. Andrews, P. S. Weiss, Y. Yang, and Hsian-Rong Tseng “Printable ultrathin metal oxide semiconductor-based conformal biosensors,” ACS Nano, vol. 9, no. 12, pp. 12174–12181, 2015.
[195] S. A. Pullano, C. D. Critello, I. Mahbub, N. T. Tasneem , S. Shamsir, S. K. Islam, M. Greco and A. S. Fiorillo “EGFET-based sensors for bioanalytical applications: a review,” Sensors, vol. 18, no. 4042, pp. 1–24, 2018.
[196] L. Gomes, A. Marques, A. Branco, J. Araújo, M. Simões, S. Cardoso, F. Silva, I. Henriques, C. A.T. Laia, and C. Costa “IZO deposition by RF and DC sputtering on paper and application on flexible electrochromic devices,” Displays, vol. 34, no. 4, pp. 326–333, 2013.
[197] P. T. Liu, D. B. Ruan, X. Y. Yeh, Y. C. Chiu, G. T. Zheng, and S. M. Sze, “Highly responsive blue light sensor with amorphous indium-zinc-oxide thin-film transistor based architecture,” Sci. Rep., vol. 8, no. 1, pp. 1–9, 2018.
[198] J. C. Chou and C. N. Hsiao, “Comparison of the pH sensitivity of different surfaces on tantalum pentoxide,” Sensors Actuators B Chem., vol. 65, no. 1, pp. 237–238, 2000.
[199] A. Murali, P. K. Sarswat, and H. Y. Sohn, “Enhanced photocatalytic activity and photocurrent properties of plasma-synthesized indium-doped zinc oxide nanopowder,” Mater. Today Chem., vol. 11, pp. 60–68, 2019.
[200] P. Wu, J. Zhang, J. Lu, X. Li, C. Wu, R. Sun, L. Feng, Q. Jiang, B. Lu, X. Pan, and Z. Ye “Instability induced by ultraviolet light in ZnO thin-film transistors,” IEEE Trans. Electron Devices, vol. 61, no. 5, pp. 1431–1435, 2014.
[201] Y. S. Kim, W. P. Tai, and S. J. Shu, “Effect of preheating temperature on structural and optical properties of ZnO thin films by sol-gel process,” Thin Solid Films, vol. 491, no. 1–2, pp. 153–160, 2005.
[202] Y. S. Chiu, C. T. Lee, L. R. Lou, S. C. Ho, and C. Te Chuang, “Wide linear sensing sensors using ZnO:Ta extended-gate field-effect- transistors,” Sensors Actuators B Chem., vol. 188, pp. 944–948, 2013.
[203] S. Shah, J. Smith, J. Stowell, and J. Blain Christen, “Biosensing platform on a flexible substrate,” Sensors Actuators B Chem., vol. 210, pp. 197–203, 2015.
[204] W. L. Tsai, B. T. Huang, K. Y. Wang, Y. C. Huang, P. Y. Yang, and H. C. Cheng, “Functionalized carbon nanotube thin films as the pH sensing membranes of extended-gate field-effect transistors on the flexible substrates,” IEEE Trans. Nanotechnol., vol. 13, no. 4, pp. 760–766, 2014.
[205] P. Valensi, L. Lorgis, and Y. Cottin, “Prevalence, incidence, predictive factors and prognosis of silent myocardial infarction: A review of the literature,” Arch. Cardiovasc. Dis., vol. 104, no. 3, pp. 178–188, 2011.
[206] N. Wettersten and A. S. Maisel, “Biomarkers for heart failure: An ppdate for practitioners of internal medicine,” Am. J. Med., vol. 129, no. 6, pp. 560–567, 2016.
[207] P. K. Mehta, J. Wei, and N. K. Wenger, “Ischemic heart disease in women: A focus on risk factors,” Trends Cardiovasc. Med., vol. 25, no. 2, pp. 140–151, 2015.
[208] M. F. M. Fathil, M. K. Md Arshad, S. C. B. Gopinath, U. Hashim , R. Adzhri, R. M. Ayub, A. R. Ruslinda, M. Nuzaihan M.N., A. H. Azman, M. Zaki, and T.-H. Tang “Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers,” Biosens. Bioelectron., vol. 70, pp. 209–220, 2015.
[209] A. S. Jaffe, L. Babuin, and F. S. Apple, “Biomarkers in acute cardiac disease. The present and the future,” J. Am. Coll. Cardiol., vol. 48, no. 1, pp. 1–11, 2006.
[210] Z. Altintas, W. M. Fakanya, and I. E. Tothill, “Cardiovascular disease detection using bio-sensing techniques,” Talanta, vol. 128, pp. 177–186, 2014.
[211] I. Lee, X. Luo, J. Huang, X. T. Cui, and M. Yun, “Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors,” Biosensors, vol. 2, no. 2, pp. 205–220, 2012.
[212] T. Kong, R. Su, B. Zhang, Q. Zhang, and G. Cheng, “CMOS-compatible, label-free silicon-nanowire biosensors to detect cardiac troponin I for acute myocardial infarction diagnosis,” Biosens. Bioelectron., vol. 34, no. 1, pp. 267–272, 2012.
[213] K. Svart, R. Lehtinen, T. Nieminen, K. Nikus, T. Lehtimäki, T. Kööbi, K. Niemelä, M, Niemi, V. Turjanmaa, M. Kähönen, and J. Viik “Exercise electrocardiography detection of coronary artery disease by ST-segment depression/heart rate hysteresis in women: The Finnish Cardiovascular Study,” Int. J. Cardiol., vol. 140, no. 2, pp. 182–188, 2010.
[214] A. Gosalia, L. B. Haramati, M. P. Sheth, and H. Spindola-Franco, “CT detection of acute myocardial infarction,” Am. J. Roentgenol., vol. 182, no. 6, pp. 1563–1566, 2004.
[215] B. Cummins and P. Cummins, “Cardiac specific troponin-I release in canine experimental myocardial infarction: Development of a sensitive enzyme-linked immunoassay,” J. Mol. Cell. Cardiol., vol. 19, no. 10, pp. 999–1010, 1987.
[216] J. F. Masson, T. M. Battaglia, P. Khairallah, S. Beaudoin, and K. S. Booksh, “Quantitative measurement of cardiac markers in undiluted serum,” Anal. Chem., vol. 79, no. 2, pp. 612–619, 2007.
[217] B. Cummins, M. L. Auckland, and P. Cummins, “Cardiac-specific troponin-l radioimmunoassay in the diagnosis of acute myocardial infarction,” Am. Heart J., vol. 113, no. 6, pp. 1333–1344, 1987.
[218] Y. X. Chen, M. W. Chen, J. Y. Lin, W. Q. Lai, W. Huang, H. Y. Chen, and G. X. Weng “Label-Free Optical Detection of Acute Myocardial Infarction Based on Blood Plasma Surface-Enhanced Raman Spectroscopy,” J. Appl. Spectrosc., vol. 83, no. 5, pp. 798–804, 2016.
[219] Y. Cai, K. Kang, Q. Li, Y. Wang, and X. He, “Rapid and sensitive detection of cardiac troponin I for point-of-care tests based on red fluorescent microspheres,” Molecules, vol. 23, no. 1102, pp. 1–13, 2018.
[220] M. Pedrero, S. Campuzano, and J. M. Pingarrón, “Electrochemical biosensors for the determination of cardiovascular markers: a Review,” Electroanalysis, vol. 26, no. 6, pp. 1132–1153, 2014.
[221] J. Jung, S. J. Kim, K. W. Lee, D. H. Yoon,Y. G. Kim, H. Y. Kwak S. R. Dugasani, S. H. Park, and H. J. Kim “Approaches to label-free flexible DNA biosensors using low-temperature solution-processed InZnO thin-film transistors,” Biosens. Bioelectron., vol. 55, pp. 99–105, 2014.
[222] J. H. Chua, R. E. Chee, A. Agarwal, M. W. She, and G. J. Zhang, “Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays,” Anal. Chem., vol. 81, no. 15, pp. 6266–6271, 2009.
[223] A. M. Smith, A. A. Lee, and S. Perkin, “The electrostatic screening length in concentrated electrolytes increases with concentration,” J. Phys. Chem. Lett., vol. 7, no. 12, pp. 2157–2163, 2016.
[224] S. Eriksson, M. Junikka, P. Laitinen, K. Majamaa-Voltti, H. Alfthan, and K. Pettersson, “Negative interference in cardiac troponin I immunoassays from a frequently occurring serum and plasma component,” Clin. Chem., vol. 49, no. 7, pp. 1095–1104, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊