|
[1] United Nations Framework Convention on Climate Change (UNFCCC). Paris agreement, [cited 2018 January 02]. Available from::http://unfccc.int/paris_agreement/items/9444.php. [2] Maggio G, Cacciola G. When will oil, natural gas, and coal peak? Fuel 98 (2012) 111-123. [3] National Hydrogen Vision Meeting, US, Department of Energy, Washington, DC(2001)Nov. 15-16. [4] Law CK, Kwon OC. Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation. Int J Hydrogen Energy 29 (2004) 867-79. [5] Thomas G, Parks G. Potential roles of ammonia in a hydrogen economy e a study of issues related to the use ammonia for on-board vehicular hydrogen storage, [cited 2014 December 08]. Available from:: http://www.hydrogen. energy.gov/pdfs/nh3_paper.pdf. [6] Zamfirescu C, Dincer I. Using ammonia as a sustainable fuel. J Power Sources 185 (2008) 459-65. [7] Bomelburg HJ. Use of ammonia in energy-related applications, Plant/Operations Progress1(3) (1982) 175-180. [8] Brandhorst H, Baltazar-Lopez M, Tatarchuk B, Cahela DR, Barron T. Ammonia its transformation and effective utilization, 6th International energy conversion engineering conference, Cleveland, Ohio (2008) 1-11. [9] Morch CS, Bjerre A, Gottrup MP. Sorenson SC, Schramm J. Ammonia/hydrogen mixtures in an SI-engine: engine performance and analysis of a proposed fuel system, Fuel 90 (2011) 854-864. [10] Grannell S M, Assanis DN, Bohac SV, Gillespie DE. The fuel mix limits and efficiency of a stoichiometric, ammonia, and gasoline duel fueled spark ignition engine. J. Eng. Gas Turbines Power 130 (2008) 042802. [11] Reiter AJ., Kong SC. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. Fuel 90 (2011) 87-97. [12] Gross CW, Kong SC. Performance characteristics of a compression-ignition engine using direct-injection ammonia-DME mixtures. Fuel 103 (2013) 1069-1079. [13] Kurata O, Iki N, Matsunuma T, Inoue T, Tsujimura T, Furutani H, Kobayashi H, Hayakawa A. Performances and Emission Characteristics of NH3-air and NH3-CH4-air Combustion Gas-turbine Power Generations, Proc. Combust. Inst., 36 (2017) 3351-3359. [14] Reiter AJ, Kong SC. Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions. Energy Fuels 22 (2008) 2963-2971. [15] Shan L, Shanshan Z, Hua Z, Zhuyin R. Analysis of air-staged combustion of NH3/CH4 mixture with low NOx emission at gas turbine conditions in model combustors. Fuel 237 (2019) 50-59 [16] Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science 10 (1984) 319-339. [17] Dixon-Lewis G, Missaghi M. Structure and extinction limits of counterflow diffusion flames of hydrogen-nitrogen mixtures in air. Symposium (International) on Combustion 22 (1988) 1461-1470. [18] Shih HY. Computed extinction limits and flame structures of H2/O2 counterflow diffusion flames with CO2 dilution. International Journal of Hydrogen Energy 34 (2009) 4005-4013. [19] Jae WK, Sun C, Hee KK, Seungro Lee, Oh CK. Extinction limits and structure of counterflow nonpremixed methane-ammonia/air flames. Energy 165 (2018) 314-325. [20] Gas Research Institute, available from:http://www.me.berkeley.edu/gri_ mech/. [21] Miller J, Bowman CT. Mechanism and modeling of nitrogen chemistry in combustion, Progress in Energy and Combustion Science 15 (1989) 287-338. [22] Lindstedt RP, Lockwood FC, Selim M A. Detailed kinetic modelling of chemistry and temperature effects on ammonia oxidation, Combustion Science and Technology 99 (1994) 253-76. [23] Konnov AA. Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism, Combustion and Flame 156 (2009) 2093-2105. [24] Tian Z, Li Y, Zhang L. Glarborg, P., Qi, F., An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure, Combustion and Flame 156 (2009) 1413-1426. [25] Mathieu O, Petersen EL. Experimental and modeling study on the high temperature oxidation of Ammonia and related NOx chemistry, Combustion and Flame 162 (2015) 554-570. [26] Hua X, Agustin VM, Richard M, Philip JB. Numerical study assessing various ammonia/methane reaction models for use under gas turbine conditions. Fuel 196 (2017) 344-351. [27] Okafor EC, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A, Kobayashi H. Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism. Combustion and Flame 204 (2019) 162-175. [28] Okafor EC, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A, Kobayashi H. Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames. Combustion and Flame 187 (2018) 185-198. [29] Mitchell DS, Vincent G. Formulation of the premixed and non-premixed test problems. Lecture Notes in Physics (1911). [30] Tsuji H. Counterflow diffusion flames. Progress in Energy and Combustion Science 8 (1982) 93-119. [31] Ravikrishna RV, Sahu AB. Advances in understanding combustion phenomena using non-premixed and partially premixed counterflow flames: A review. International Journal of Spray and Combustion Dynamics 10 (2018) 38-71. [32]Water Absorption Spectrum from:http://www1.lsbu.ac.uk/water/vibrat.html. [33]Malkmus W. Random Lorentz band model with exponential-tailed S-1 line –intensity distribution function, Journal of Optical Socity 57 (1967) 323-329 [34]Yu Y, Masuya G, Ronney PD. Proceedongs of the Combustion Institute 27 (1998) 2619-2626. [35] Ludwing CB, Malkmus W, Reardon JE, Thomson JAL. Handbook of infrared radiation from combustion gases. (1997). [36] Yu S, Hamid H, Jakob MC, Chun Z, Paul M, Peter G. Ammonia oxidation at high pressure and intermediate temperatures.Fuel 181 (2016) 358-365. [37] Junichiro O, Mitsuo K, Teruo M, Hiroshi I, Koichi Y. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion. International Journal of Hydrogen Energy 43 (2018) 3004-3014. [38] Klippenstein SJ., Harding LB, Glarborg P, Miller JA. The role of NNH in NO formation and control. Combustion and Flame 158 (2011) 774-789. [39] Kéromnès A, Metcalfe WK, Heufer KA, Donoho H, Das AK, Sung CJ, Herzler J, Naumann C, Griebel P, Methieu O, Krejci, Petersen EL, Petersen EL, Pitz WJ, Curran HJ. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combustion and Flame 160 (2013) 995-1011. [40] Dagaut P, Glarborg P, Alzueta MU. The oxidation of hydrogen cyanide and related chemistry. Progress in Energy and Combustion Science 34 (2008) 1-46. [41] Dayma G, Dagaut P. Effects of air contamination on the combustion of hydrogen-effect of NO and NO2 addition on hydrogen ignition and oxidation kinetics. Combustion Science and Technology 178 (2006) 1999-2024. [42] Sivaramakrishnan R, Brezinsky K, Dayma G, Dagaut P. High pressure effects on the mutual sensitization of the oxidation of NO and CH4-C2H6 blends. Physical Chemistry Chemical Physics 9 (2007) 4230-4244. [43] Glarborg, P, Alzueta, MU, Dam-Johansen K, Miller JA. Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor. Combustion and Flame 115 (1998) 1-27. [44] Rasmussen CL, Geest Jakobsen JON, Glarborg, P. Experimental measurements and kinetic modeling of CH4/O2 and CH4/C2H6/O2 conversion at high pressure. International Journal of Chemical Kinetics 40 (2008) 778-807. [45] Skreiberg Ø, Kilpinen P, Glarborg P. Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor. Combustion and Flame 136 (2004) 501-518. [46] Dagaut P, Glarborg P, Alzueta MU. The oxidation of hydrogen cyanide and related chemistry. Progress in Energy and Combustion Science 34 (2008) 1-46. [47] Rasmussen CL, Rasmussen AE, Glarborg P. Sensitizing effects of NOx on CH4 oxidation at high pressure. Combustion and Flame Volume 154, (2008) 529-545. [48] Lutz AE, Kee JR, Grcar JF, Rulple FM. Oppdif: a fortran program for computing opposed-flow diffusion flames, Sandia National Laboratories Report SAND96-8243, 1996. [49] Grcar JF. The Twopnt program for boundary value problems, Sandia Naional Laboratories Report SAND91-8230, 1992. [50] Kee RJ, Rupey FM, Miller JA. Chemkin II: a fortan chemical kinetics package for the analysis of gas-phase chemical kinetics, Sandia National Laboratories Report SAND89-8009, 1989. [51] Kee RJ, Dixon-Lewis G, Warnatz JA, Coltrin ME, Miller JA. Fortran computer code package for the evaluation of gas-phase multi-componet transport properties, Sandia National Laboratories Report SAND86-8246, 1986. [52] da Rocha RC, Costa M, Bai X. Chemical kinetic modelling of ammonia/hydrogen/air ignition, premixed flame propagation and NO emission. Fuel 246 (2019) 24-33. [53] Okafor EC, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A, Kobayashi H. Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism. Combustion and Flame 204 (2019) 162-175.
|