( 您好!臺灣時間:2024/04/15 05:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):HSIAO, PI-YUEH
論文名稱:海藻酸鈉/結蘭膠水膠膜應用於傷口敷料 之潛力
論文名稱(外文):Sodium alginate/gellan gum hydrogel films for potential wound dressings
指導教授(外文):JAO, WIN-CHUN
外文關鍵詞:sodium alginategellan gumquercetinshikoninantioxidant activityantibacterial activitywound dressings
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將海藻酸鈉(sodium alginate)與結蘭膠(gellan gum)混摻水膠包覆槲皮素或紫草素,評估於傷口敷料應用之潛力。本實驗採用不同比例的海藻酸鈉與結蘭膠混摻均勻溶液,利用鈣離子交聯製備成水膠膜。分別探討海藻酸鈉/結蘭膠水膠膜的膨脹性、抗氧化活性、生物相容性和抗菌活性等傷口敷料特性。由海藻酸鈉/結蘭膠水膠膜在不同pH值之溶脹行為,顯示其膨脹性具有極佳的酸鹼應答性。實驗結果顯示海藻酸鈉/結蘭膠/槲皮素水膠膜的DPPH自由基清除率、螯合亞鐵離子能力及總酚含量優於海藻酸鈉/結蘭膠/紫草素水膠膜。細胞存活率分析顯示海藻酸鈉/結蘭膠/槲皮素水膠膜及海藻酸鈉/結蘭膠/紫草素水膠膜對L929小鼠纖維母細胞具有良好的細胞相容性。經由紙錠擴散試驗顯示海藻酸鈉/結蘭膠/紫草素水膠膜對於大腸桿菌(E. coli)及金黃色葡萄菌(S. aureus)有良好的抗菌活性。綜合上述結果,海藻酸鈉/結蘭膠水膠膜可應用於傷口敷料。
The objective of this study was to develop sodium alginate/gellan gum hydrogels containing quercetin or shikonin for wound dressing. Blends of sodium alginate and gellan gum were crosslinked by calcium ions to form the hydrogel films. To evaluate the performance of sodium alginate/gellan gum hydrogel films as wound dressing material, the swelling behavior, antioxidant activity, biocompatibility and bactericidal activity were measured. The swelling properties at different pH of sodium alginate/gellan gum hydrogel films were investigated and the results showed an excellent pH responsive behavior. The sodium alginate/gellan gum/quercetin hydrogel films showed greater 2,2-diphenyl-1-picryl- hydrazyl radical (DPPH), ferrous chelating ability and total phenolic content (TPC) than the sodium alginate/gellan gum/shikonin hydrogel films. The MTT assays revealed that sodium alginate/gellan gum/quercetin and sodium alginate/gellan gum/shikonin hydrogel films were biocompatible with L929 fibroblast cells. An antibacterial study against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) revealed excellent antibacterial efficacy of the sodium alginate/gellan gum/shikonin hydrogel films. This work demonstrates the sodium alginate/gellan gum hydrogel as a suitable candidate for wound dressing applications.

Abstract i
摘要 ii
目錄 iii
圖目錄 iv
表目錄 v
第一章 前言 1
第一節 研究背景 1
第二節 研究目的 2
第二章 文獻回顧 4
第一節 傷口敷料 4
第二節 智慧型水膠 10
第三節 海藻酸鈉 17
第四節 結蘭膠 19
第五節 槲皮素 21
第六節 紫草素 23
第三章 材料與方法 25
第一節 實驗藥品 25
第二節 實驗儀器 26
第三節 實驗流程 27
第四節 實驗方法 28
第四章 實驗結果與討論 35
第一節 物理性質分析 35
第二節 抗氧化能力分析 37
第三節 生物相容性 39
第五章 結論 44
第六章 參考文獻 45


陳宜蘭、傅如嶽、黃宜純、黃淑桂、楊佳璋、溫慧萍、鄭智交,皮膚生理學(二版) ,台中:華格那企業,(2004)。
Abdelrahman, T. and Newton, H. (2011), Wound dressings: principles and practice. Surgery (Oxford). 29:491-495.
Agarwal, A., McAnulty, J. F., Schurr, M. J., Murphy, C. J. and Abbott, N. L. (2011), Polymeric materials for chronic wound and burn dressings. Advanced Wound Repair Therapies. 186-208.
Aiello, L. and Dean, C. (1990), An introduction to human evolutionary anatomy. Academic Press: London.
Ahmed, E. M. (2015), Hydrogel: Preparation, characterization, and applications. Journal of Advanced Research. 6:105-121.
Andújar, I., Recio, M. C., Giner, R., M. and Ríos, J. L. (2013), Traditional Chinese medicine remedy to jury: the pharmacological basis for the use of shikonin as an anticancer therapy. Current Medicinal Chemistry. 20:2892-2898.
Assimopoulou, A. N., Boskou, D. and Papageorgiou, V. P. (2004), Antioxidant activities of alkannin, shikonin and Alkanna tinctoria root extracts in oil substrates. Food Chemistry. 87:433-438.
Bajpai, A. K., Shukla, S. K., Bhanu, S. and Kankane, S. (2008), Responsive polymers in controlled drug delivery. Progress in Polymer Science. 33:1088-1118.
Bhardwaj, N. and Kundu, S. C. (2010), Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances. 28:325-347.
Blois, M. S. (1958), Antioxidant determinations by the use of a stable free radical. Nature. 181:1199-1200.
Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M. and Morelli, I. (2001), Antioxidant principles from Bauhinia terapotensis. Journal of Natural Products. 64:892-895.
Boots, A. W., Haenen, G. R. M. M. and Bast, A. (2008), Health effects of quercetin: From antioxidant to nutraceutical. European Journal of Pharmacology. 585:325-337.
Buwalda, S. J., Boere, K. W. M., Dijkstra, P. J., Feijen, J., Vermonden, T. and Hennink, W. E. (2014), Hydrogels in a historical perspective: From simple networks to smart materials. Journal of Controlled Release. 190: 254-273.
Calo, E. and Khutoryanskiy, V. V. (2015), Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal. 65:252-267.
Cassanelli, M., Prosapio, V., Norton, I.and Mills, T. (2018), Acidified/basified gellan gum gels: The role of the structure in drying/ rehydration mechanisms. Food Hydrocolloids. 82:346-354.
Castangia, I., Nacher, A., Caddeo, C., Valenti, D., Fadda, A. M., Diez-Sales, O., Ruiz-Sauri, A. and Manconi, M. (2014), Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice. Acta Biomaterialia,.10 :1292-1300.
Chan, A., Orme, R. P., Fricker, R. A. and Roach, P. (2013), Remote and local control of stimuli responsive materials for therapeutic applications. Advanced Drug Delivery Reviews. 65:497-514.
Chandler, S. F. and Dodds, J. H. (1983), The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasidine in callus cultures of Solanum lacinitum. Plant Cell Reports. 2:205-208.
Chen, X., Yang, L., Oppenheim, J. J. and Howard, M. Z. (2002), Cellular pharmacology studies of shikonin derivatives. Phytotherapy Research. 16:199-209.
Chen, X., Yang, L., Zhang, N., Turpin, J. A., Buckheit, R. W., Osterling, C., Oppenheim, J. J. and Howard, O. M. (2003), Shikonin, a component of Chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1. Antimicrobial Agents and Chemotherapy. 47:2810-2816.
Crawford, M. E. (2012), Surgical dressings. Lower Extremity Soft Tissue & Cutaneous Plastic Surgery (Second Edition). p381-387.
D'Andrea, G. (2015), Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia. 106: 256-271.
Delavary, B. M., van der Veer, W. M., van Egmond, M., Niessen, F. B. and Beelen, R. H. J. (2011), Macrophages in skin injury and repair. Immunobiology 216:753-762.
Decker, E.A. and Welch, B. (1990), Role of ferritin as a lipid oxidation datalyst in muscle food. Journal of Agricultural and Food Chemistry. 38:674-677.
Draget, K. I. and Taylor, C. (2011), Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocolloids, 25:251-256.
Drurya, J. L. Dennisb, R. G. Mooneya, D. J. (2004), The tensile properties of alginate hydrogels. Biomaterials, 25:3187-3199.
Du, Y., Sun, J., Wang, L., Wu, C., Gong, J., Lin, L., Mu, R. and Pang, J. (2019), Development of antimicrobial packaging materials by incorporation of gallic acid into Ca2+ crosslinking konjac glucomannan/gellan gum films. International Journal of Biological Macromolecules 137:1076-1085.
Fonder, M. A., Lazarus,G. S., Cowan, D. A., Aronson-Cook, B., Kohli, A. R. and Mamelak, A. J. (2008), Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings. Journal of the American Academy of Dermatology. 58:185-206.
Formica, J. V. and Regelson, W. (1995), Review of the biology of quercetin and related bioflavonoids. Food and Chemical Toxicology. 33:1061-1080.
George, M. and Abraham, T. E. (2006), Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan-a review. Journal of Controlled Release. 114:1-14.
Grøndahl, L., Lawrie, G. and Jejurikar, A. (2010), Alginate-based drug delivery devices. Biointegration of Medical Implant Materials. Pp 236-266.
Gyles, D. A., Castro, L. D., Silva Jr., J. O. C. and Ribeiro-Costa, R. M. (2017), A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. European Polymer Journal. 88:373-392.
Guo, L. (2009), Understanding the cellular basis of skin growth. Biomaterials for Treating Skin Loss. p80-86.
Gupta, B., Agarwal, R. and Alam, M. S. (2011), Hydrogels for wound healing applications. Biomedical Hydrogels. p:184-227.
Gupta, F., Vermani, K. and Garg, S. (2002), Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today. 7: 569-579.
Haider, T. and Husain, Q. (2008), A layered calcium alginate-starch beads immobilized galactosidase as a therapeutic agent for lactose intolerant patients. International Journal of Pharmaceutics. 359:1-6.
Han, J., Chen, T. X., Branford-White, C. J. and Zhu, L. M. (2009), Electrospun shikonin-loaded PCL/PTMC composite fiber mats with potential biomedical applications. International Journal of Pharmaceutics. 382:215-221.
Hoare, T. R. and Kohane, D. S. (2008), Hydrogels in drug delivery: progress and challenges. Polymer. 49:1993-2007.
Horst, B., Chouhan, G., Moiemen, N. S. and Grover. L. M. (2018), Advances in keratinocyte delivery in burn wound care. Advanced Drug Delivery Reviews. 123:18-32.
Hoffman, A. S. (2012), Hydrogels for biomedical applications. Advanced Drug Delivery Reviews. 64:18-23.
Imahara, S. D. and Klein, M. B. (2009), Skin grafts. biomaterials for treating skin loss. p58-79.
Kamoun, E. A., Kenawy, E. S. and Chen, X. (2017), A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of Advanced Research. Food chemistry. 8:217-233.
Kang, S. and Bae, Y. H. (2001), pH-induced volume-phase iransition of hydrogels containing sulfonamide side group by reversible crystal formation. Macromolecules. 34: 8173-8178.
Kim, H S., Sun, X., Lee, J. H. Kim, H. W., Fu, X. and Leong, K. W. (2019), Advanced drug delivery systems and artificial skin grafts for skin wound healing. Advanced Drug Delivery Reviews. 146:209-239.
Knilla, C. J., Kennedy, J. F., Mistry, J., Miraftab, M., Smart, G., Groocock, M. R. and William, J. (2004), Alginate fibres modified with unhydrolysed and hydrolysed chitosans for wound dressings. Carbohydrate Polymers. 55:65-76.
Koch, L., Michael, S., Reimers, K., Vogt, P. M. and Chichkov, B. (2015), Chapter 13 Bioprinting for Skin. 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine. 2:281-306.
Koetting, M. C., Peters, J. T., Steichen, S. D. and Peppas, N. A. (2015), Stimulus-responsive hydrogels: Theory, modern advances, and applications. Materials Science and Engineering R. 93:1-49.
Kondo, T. (2007), Timing of skin wounds, Legal Medicine. 9:109-114.
Kondo, T. and Ishida, Y. (2010), Molecular pathology of wound healing. Forensic Science International. 203:93-98.
Kourounakis, A. P., Assimopoulou, A. N., Papageorgiou, V. P., Gavalas, A., and Kourounakis, P. N. (2002), Alkannin and shikonin:effect on free radical processes and on inflammation. A preliminary pharmacochemical investigation. Archiv der Pharmazie Pharmaceutical and Medicinal Chemistry. 6:262-266.
Kumar, V. D., Verma, P. R. P. and Singh, S. K. (2015), Development and evaluation of biodegradable polymeric nanoparticles for the effective delivery of quercetin using a quality by design approach. LWT-Food Science and Technology. 61:330-338.
Layek, B. and Mandal, M. (2020), Natural polysaccharides for controlled delivery of oral therapeutics: a recent update. Carbohydrate Polymers. 230:115617-115636.
Lange, B. M., Severin, K., Bechthold, A. and Heide, L. (1998), Regulatory role of microsomal 3-hydroxy-3-methyl-glutarylcoenzyme a reductase for shikonin biosynthesis in lithospermum erythrorhizon cell suspension cultures. Planta 204:234-241.
Lee, H., Song, C., Baik, S., Kim, D., Hyeon, T. and Kim, D. (2018), Device-assisted transdermal drug delivery. Advanced Drug Delivery Reviews 127:35-45.
Lee, K. Y. and Mooney, D. J. (2012), Alginate: Properties and biomedical applications. Progress in Polymer Science, 37:106-126.
Lee, K. Y. and Yuk, S. H. (2007), Polymeric protein delivery systems. Progress in Polymer Science. 32:669-697.
Lesjak, M., Beara, I., Simin, N., Pintać, D., Majkić, T., Bekvalac, K., Orčić, D., and Mimica-Dukić, N. (2018), Antioxidant and anti-inflammatory activities of quercetin and its derivatives. Journal of Functional Foods. 40:68-75.
Leveriza-Oh, M. and Phillips, T. J. (2005), Dressings and Postoperative Care, Surgery of the Skin. Procedural Dermatology. p117-135.
Li, J., Chen, J. and Kirsner, R. (2007), Pathophysiology of acute wound healing. Clinics in Dermatology, 25:9-18.
Liu, F. and Urban, M. W. (2010), Recent advances and challenges in designing stimuli-responsive polymers. Progress in Polymer Science. 35:3-23.
Luangtongkum, T., Morishita, T. Y., El-Tayeb, A. B., Ison, A. J. and Zhang, Q. (2007), Susceptibility testing of Campylobacter spp. by the agar dilution and the agar disk diffusion methods. Journal of Clinical Microbiology. 45: 590-594.
Matricardi, P., Meo, C. D., Coviello, T., Hennink, W. E., and Alhaique, F. (2013), Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering. Advanced Drug Delivery Reviews 65:1172-1187.
Metcalfe, A. D. and Ferguson, M. W. J. (2007), Bioengineering skin using mechanisms of regeneration and repair. Biomaterials. 28:5100-5113.
Milas, M., Shi, X. and Rinaudo, M., (1990), On the physicochemical properties of gellan gum. Biopolymers, 30:451-464.
Minutti, C. M., Knipper, J. A., Allen, J. E. and Zaiss, D. M. E. (2017), Tissue-specific contribution of macrophages to wound healing. Seminars in Cell & Developmental Biology. 61:3-11.
Mogos G. D. and Grumezescu A. M. (2014), Natural and synthetic polymers for wounds and burns dressing. nternational Journal of Pharmaceutics. 463:127-136.
Morris, E. R., Nishinari, K. and Rinaudo, M. (2012), Gelation of gellan-A review. Food Hydrocolloids. 28:373-411.
Morton, L. M. and Phillips, T. J. (2012), Wound Healing Update. Seminars in Cutaneous Medecine and Surgery. 31:33-37.
Nabavi, N. F., Russo, G. L., Daglia, M. and Nabavi, S. M. (2015), Role of quercetin as an alternative for obesity treatment: You are what you eat. Food Chemistry. 179: 305-310
Osmałek, T., Froelich, A. and Tasarek, S. (2014), Application of gellan gum in pharmacy and medicine. International Journal of Pharmaceutics 466: 328-340.
Ovington, L. G. (2007), Advances in wound dressing. Clinics in Dermatology. 25:33-38.
Papageorgiou, V. P., Assimopoulou, A. N., Couladouros, E. A., Hepworth, D. and Nicolaou, K. C. (1999), The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. Angewandte Chemie International Edition. 38:270-300.
Papageorgiou, V. P., Assimopoulou, A. N., Samanidou, V. F. and Papadoyannis, I. N. (2006), Recent Advances in Chemistry, Biology and Biotechnology of Alkannins and Shikonins. Current Organic Chemistry. 10:2123-2142.
Papageorgiou, V. P., Assimopoulou, A. N. and Ballis, A. C. (2008), Alkannins and shikonins : a new class of would healing agents. Current Medicinal Chemistry. 15:3248-3267.
Paques, J. P., van der Linden, E., van Rijn, C. J. M. and Sagis, L. M. C. (2014), Preparation methods of alginate nanoparticles. Advances in Colloid and Interface Science 209:163-171
Patel, R. V., Mistry, B. M., Shinde, S. K., Syed, R., Singh,V. and Shin., H. S. (2018), Therapeutic potential of quercetin as a cardiovascular agent. R.V. 890 Patel et al. / European Journal of Medicinal Chemistry 155: 889-904.
Pawar S. N. and Edgar K. J. (2012), Alginate derivatization: A review of chemistry, properties and applications. Biomaterials. 33:3279-3305.
Powers, J. G., Higham, C., Broussard, K. and Phillips, T. J. (2016), Wound healing and treating wounds: chronic wound care and management, Journal of the American Academy of Dermatology. 74: 607-625.
Qiu, Y. and Park, K. (2012), Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews. 64:49-60.
Qureshi, D., Nayak, S. K., Maji, S., Anis, A., Kim, D. and Pal, K. (2019), Environment sensitive hydrogels for drug delivery applications. European Polymer Journal 120:109220.
Rao, Z., Liu, X., Zhou, W., Yi, J. and Li, S. S. (2011), Synthesis and antitumour activity of β-hydroxyisovaleryl shikonin analogues. European Journal of Medicinal Chemistry. 46: 3934-3941.
Saghazadeh, S., Rinoldi, C., Schot, M., Kashaf, S. S., Sharifi, F., Jalilian, E., Nuutila, K., Giatsidis, G., Mostafalu, P., Derakhshandeh, H., Yue, K., Swieszkowski, W., Memic, A., Tamayol, A. and Khademhosseini, A. (2018), Drug delivery systems and materials for wound healing applications. Advanced Drug Delivery Reviews. 127:138-166.
Samal, S. K., Dash, M., Dubruel, P. and Van Vlierberghe, S. (2014), Smart polymer hydrogels:properties, synthesis and applications. Smart Polymers and their Applications. p 237-270.
Schneider, A., Wang, X. Y., Kaplan, D. L., Garlick, J. A. and Egles, C. (2009), Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomaterialia. 5:2570-2578.
Siegel, R. A. (2014), Stimuli sensitive polymers and self regulated drug delivery systems: A very partial review. Journal of Controlled Release. 190: 6094-6099.
Singh, R. S., Gara, R. K., Bhardwaj, P. K., Kaachra, A., , S., K Malik umar, R., Sharma, M., Ahuja, P. S., and Kumar, S. (2010), Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxybenzoate-m-geranyltrans- ferase and genes of phenyl- propanoid pathway exhibits positive correlation with shikonins content in arnebia [arnebia euchroma (royle) johnston]. BMC Molecular Biology. 11:88-98.
Singleton, V. L. and Rossi, J. A. (1965), Colorimetry of total phenolics with phosphomolibdic phosphotungstic acid reagent, American Journal of Enology Viticulture. 16:144-158.
Slinkard, K. and Singleton, V.L. (1977), Total phenol analyses: automation and comparison with manual methods. American Journal of Enology and Viticulture. 28:49-55.
Tang, S. M., Deng, X. T., Zhou, J., Li, Q. P., Ge, X. X. and Miao, M.(2020).Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomedicine & Pharmacotherapy 121:109604.
Thakur, S., Sharma, B., Verma, A., Chaudhary, J., Tamulevicius, S. and Thakur, V. K. (2018), Recent progress in sodium alginate based sustainable hydrogels for environmental applications. Journal of Cleaner Production. 198:143-159.
Ullah, F., Othman, M. B. H., Javed, F., Ahmad, Z. and Akil, H. M. (2015), Classification, processing and application of hydrogels: A review. Materials Science and Engineering C. 57:414-433.
Wach, A., Pyrzyńska, K. and Biesaga, M. (2007), Quercetin content in some food and herbal samples. Food Chemistry. 100:699-704.
Wang, J. and Windbergs, M. (2017), Functional electrospun fibers for the treatment of human skin wounds. European Journal of Pharmaceutics and Biopharmaceutics. 119:283-299.
Wang, L., Shelton, R.M., Cooper, P. R., Lawson, M., Triffitt, J. T. and Barrale, J. E. (2003), Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials. 24:3475-3481.
Wang, W., Sun, C., Mao, L., Ma, P., Liu, F., Yang, J. and Gao., Y. (2016), The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends in Food Science & Technology. 56:21-38.
Yetisen, A. K., Butt, H., Volpatti, L. R. Pavlichenko, I., Humar, M., Kwok, S. J. J., Koo, H., Kim, K. S., Naydenova, I., Khademhosseini, A., Hahn, S. K., and Yun, S. H. (2016), Photonic hydrogel sensors. Biotechnology Advances. 34:250-271.
Yu, C. Y., Yin, B. C., Zhang, W., Cheng, S. X., Zhang, X. Z. and Zhuo, R. X. (2009), Composite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pH-sensitive drug release property. Colloids and Surfaces B: Biointerfaces. 68:245-249.
Zaghloul, T. I., Hendawy, H. M., El Assar, S. and Mostafa, M. H. (2002), Enhanced stability of the cloned Bacillus subtilis alkaline protease gene in alginate-immobilized B. subtilis cell. Enzyme and Microbial Technology. 30:862-866.
Zhang, B., Liu, X., Wang, C., Li, L., Ma, L. and Gao, C. (2015), Bioengineering Skin Constructs. Stem Cell Biology and Tissue Engineering in Dental Sciences. 52: 703-719.
Zhang, X. Z., Yang, Y. Y., Chung, T. S. and Ma, K. K. (2001), Fabrication and characterization of Fast response poly(N-isopropyl acrylamide) hydrogels. Langmuir. 17: 6094-6099.
Zia, K. M., Tabasum, S., Khan, M. F., Akram, N., Akhter, N., Noreen, A. and Zuber. M. (2018), Recent trends on gellan gum blends with natural and synthetic polymers: A review. International Journal of Biological Macromolecules. 109 :1068-1087.
Zia, K. M., Zia, F., Zuber, M., Rehman, S. and Ahmad, M. N. (2015), Alginate based polyurethanes: A review of recent advances and perspective. International Journal of Biological Macromolecules. 79 :377-387.

第一頁 上一頁 下一頁 最後一頁 top