跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/21 14:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林佳蓉
研究生(外文):LIN,JIA-RONG
論文名稱:降雨誘發崩塌之河階地聚落承災風險評估模式建置
論文名稱(外文):Risk Assessment of Rainfall-induced Landslides for River Terrace Communities
指導教授:陳怡睿陳怡睿引用關係曾志民曾志民引用關係
指導教授(外文):CHEN, YIE-RUEYTSENG, CHIH-MING
口試委員:陳景文徐輝明張純明
口試委員(外文):CHEN JING-WENHUI, HSU-MICHANG, CHWEN-MING
口試日期:2020-07-24
學位類別:碩士
校院名稱:長榮大學
系所名稱:土地管理與開發學系碩士班
學門:建築及都市規劃學門
學類:都市規劃學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:133
中文關鍵詞:山崩潛勢風險評估衛星影像判釋羅吉斯迴歸確定係數法地理資訊系統河階地
外文關鍵詞:landslide potentialrisk assessmentsatellite image interpretationlogistic regressiondetermination coefficient methodsgeographic information systemriver terrace
相關次數:
  • 被引用被引用:5
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣地形以陡峭的山坡地為主,河流短且流速急,且位屬亞熱帶氣候區,常有颱風暴雨的侵襲,使得土石崩塌現象增加;加上近年來坡地地區土地利用及經濟發展增加,故導致坡地崩塌的數量及規模產生變化,並有逐年增加之趨勢,其中河階地為主要開發區域,需更加強重視環境災害及安全。故針對山坡地及河階地保全對象暴露於土砂災害之潛在危害風險之探究,建立風險評估模式為必要途徑之一,以提供相關單位進行區域治理、災害預防及坡地利用規劃時之參考。
本研究以南台灣楠梓仙溪為研究區域,其中包含高雄市那瑪夏區、甲仙區、杉林區、內門區、旗山區等行政區,選定2006年至2014年共九場颱風降雨前後之福衛二號及SPOT-5衛星影像,先運用ArcGIS平台影像判釋模組之支撐向量機、最大概似法及隨機樹等三種監督式影像分類工具,結合ERDAS IMGINE 之紋理分析,進行影像分類判釋並擇優,獲取地表變遷及災害資訊。研究中,選定自然環境、降雨觸發及坡地敏感等致災因子,分別利用確定係數法及羅吉斯迴歸分析,推估降雨誘發崩塌之危害程度,並透過實地探勘、政府公開資料及現地訪談,推算研究區域耐災能力、空間及時間衝擊之機率,再配合研究區域之承災脆弱度,建置降雨誘發崩塌之聚落承災風險評估模式。
研究區域衛星影像判釋結果顯示,各不同判釋方法之精確度皆達中至中高程度,且以SVM之成果最佳。透過羅吉斯迴歸及確定係數法分別建立之坡地崩塌潛勢評估模式之平均整體正確率分別為89%及78%,且平均AUC值分別為0.95及0.92。研究區域承災風險評估結果顯示,河階地聚落遭受空間衝擊影響機率較高,且楠梓仙溪下游受到時間衝擊之可能性較楠梓仙溪上游高。此外,具有受災經驗之村里其備災及應災等耐災能力較其他地區完善。再者,脆弱程度較高之地區其平均收入較其他地區低,並大多位於土石流潛勢風險範圍及崩塌地發生之區域。結果亦顯示,坡地崩塌風險等級高及中高風險之區域多位於原崩塌地及楠梓仙溪上游之河階地聚落附近。

Taiwan’s topography is dominated by steep mountain slopes, with short rivers and rapid velocities, and is located in a subtropical climate zone, where typhoons and rain are often invaded, which increases landslides. In addition, the increase in land use and economic development in slope areas in recent years has led to changes in the number and scale of landslides, and there is a tendency to increase year by year. Among them, river terraces are the main development area, and more attention needs to be paid to environmental disasters and safety. Therefore, the establishment of a risk assessment model is one of the necessary ways to explore the potential hazards of mountain slopes and river terraces that are exposed to sediment disasters to provide relevant units with reference for regional governance, disaster prevention, and slope utilization planning.
This study takes Nanzihsiian River in southern Taiwan as the research area, which includes the administrative districts of Namasia, Jiaxian, Shanlin, Neimen and Qishan in Kaohsiung City. A total of nine typhoons from 2006 to 2014 were selected before and after rainfall. For FORMOSAT-2 and SPOT-5 satellite images. The three supervised image classification tools of the ArcGIS platform image interpretation module, i.e., support vector machine (SVM), the method of maximum likelihood, and the random tree, combined with the texture analysis of ERDAS IMGINE, were used to perform image classification. The best image classification results were used to obtain information on surface changes and disasters. Hazard factors such as natural environment, rainfall trigger, and slope sensitivity were selected, and the determination coefficient method and logistic regression analysis were used to estimate the hazard degree of rainfall-induced landslide. And through on-site exploration, government public information, and on-site interviews, we can calculate the probability of disaster tolerance, and spatiotemporal impact of the study area. Finally, a settlement risk assessment model for rainfall-induced landslides were established coupled with the disaster-bearing vulnerability of the study area.
The interpretation results of satellite images in the study area show that the accuracy of the various interpretation methods is medium to high, and the results of SVM are the best. The average overall accuracy rates of the landslide potential evaluation models established by logistic regression and determination coefficient methods were 89% and 78%, and the average AUC values were 0.95 and 0.92, respectively. The results of the disaster risk assessment of the study area show that the river terrace settlements are more likely to be affected by spatial shocks, and the lower Nanzihsiian River is more likely to be subject to time shocks than the upper Nanzihsiian River. In addition, villages with disaster-stricken experience have better disaster preparedness and response capabilities than other regions. Furthermore, the average income of the areas with higher vulnerability is lower than that of other areas, and most of them are located in the areas where the potential risk of debris flow and landslide occurred. The results also show that areas with high and medium-high risk of landslide are mostly located near the original landslide area and the river terrace settlements in the upper reaches of Nanzihsiian River.

謝誌 I
摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究範圍 3
1.4 研究流程 9
第二章 文獻回顧 11
2.1 影像分類之相關文獻 11
2.2 降雨致災評估之相關文獻 12
2.3 風險評估之相關文獻 13
2.4 河階地承災之相關文獻 15
第三章 研究方法 16
3.1 衛星影像判釋方法 16
3.1.1 最大概似法 16
3.1.2 隨機樹 17
3.1.3 支撐向量機 17
3.1.4 紋理分析 17
3.2 羅吉斯迴歸分析 19
3.3 確定係數法 20
3.4 接收者操作特徵曲線 21
3.5 地理資訊系統 22
第四章 坡地崩塌潛勢評估模式建置 24
4.1 研究區域颱風降雨前後衛星影像之擇定 24
4.2 衛星影像判釋與崩塌地資料擷取 25
4.2.1 衛星影像前處理 25
4.2.2 影像紋理分析 26
4.2.3 樣區圈繪因子之擇定 27
4.2.4 影像判釋分類 28
4.2.5 影像判釋結果檢定 29
4.2.6 研究區域崩塌地擷取 31
4.3 致災因子選定 33
4.3.1 自然環境因子 34
4.3.2 坡地敏感因子 41
4.3.3 降雨觸發因子 42
4.4 因子相關性檢定 46
4.5 坡地崩塌潛勢評估 48
4.5.1 以羅吉斯迴歸建立之評估模式 48
4.5.2 以確定係數法建立之評估模式 53
4.5.3 坡地崩塌潛勢評估結果之成效檢驗 57
4.5.4 研究區域坡地崩塌潛勢圖繪製 60
第五章 研究區域河階地承災風險評估模式建置 63
5.1 坡地崩塌危害程度分析 64
5.2 空間衝擊分析 64
5.2.1 建築物型態 64
5.2.2 基礎設施 72
5.2.3 空間衝擊之空間分佈推估 76
5.3 時間衝擊分析 77
5.3.1 建築物部份 78
5.3.2 公共設施部份 79
5.3.3 時間衝擊之空間分佈推估 82
5.4 耐災能力分析 84
5.5 脆弱度分析 89
5.5.1 脆弱度指標之選定 89
5.5.2 脆弱度空間分佈推估 94
5.6 研究區域河階地之坡地崩塌承災風險聚落劃設 95
第六章 結論與建議 106
6.1 結論 106
6.2 建議 108
參考文獻 109
附錄 115
附錄A 影像分類結果圖 115
自述 119


【中文】
1.王俞婷(2005)。建立坡地社區耐災程度評估模式-以台中縣與南投縣為例。國立中興大學水土保持學系研究所碩士論文,台中。
2.王濟川、郭志剛 (2003)。Logistic迴歸模型-方法及應用。台北市:五南。
3.何易平、馬澤忠、謝洪、崔鵬、王兆印(2004)。基於GIS 的土地利用類型與山地災害敏感性分析—以雲南省昆明市東川區為例。水土保持學報,18(4),177-181。
4.吳亭燁、張駿暉、劉哲欣、施虹如、張志新(2016)。極端降雨引致坡地災害對新店溪流域之衝擊與影響。災害防救科技與管理學刊。5(2),19-39。
5.吳鳴廸(2011)。颱洪災害民眾疏散避難行為決策因素之研究-以屏東縣高樹鄉及林邊鄉為例。國立高雄應用科技大學土木工程與防災科技研究所碩士論文。
6.李承玫、林雪美(2019)。宜蘭縣大同鄉土地利用與坡地崩塌之風險分析。工程環境會刊,39,119-147。
7.李嶸泰、張嘉琪、詹勳全、廖珮妤、洪雨柔(2012)。應用羅吉斯迴歸法進行阿里山地區山崩潛勢評估。中華水土保持學報,43(2),167-176。
8.周天穎(2003)。地理資訊系統理論與實務。台北市:儒林。
9.林秉賢、許惠綺、林瑞仁、洪政義、邱啟芳(2020) 。高雄寶來DS02竹林聚落潛在大規模崩塌地之重大土砂災害風險評估與策略因應。水保技術,14(1),36-49。
10.林榮章(1999)。都會區多解像力遙測影像之紋理分析。中興大學土木工程研究所碩士論文。
11.俞洪亮、蔡義清、莊懿妃(2012)。商管研究資料分析:SPSS 的應用。華泰文化事業股份有限公司,修訂二版。
12.洪孟榛(2019)。降雨影響山崩潛勢之坡地擾動危害指標建置之研究。長榮大學土地管理與開發學系研究所碩士論文。
13.胥海威、何寬(2010)。改進隨機決策樹群算法在監督分類中的應用。地理與地理信息科學,26(6),38-40。
14.倪柏寧(2010)。土砂災害潛勢區風險評估模式之建置。長榮大學土地管理與開發研究所碩士學位論文。
15.郭惠娟、唐南奇、林金寶(2010)。基於GIS 的仙游縣土地利用與滑坡災害敏感性分析。福建農林大學學報(自然學科版),39(4),417-420。
16.陳育祈(2011) 。應用地理資訊系統於河階地之危害度評估-以南投縣陳有蘭溪集水區為例。朝陽科技大學營建工程系研究所碩士學位論文。
17.陳怡睿,林洧全,謝舜傑(2011)。坡地利用影響山崩潛勢之評估模式建置-以寶來地區歷經莫拉克颱風為例。中華水土保持學報,42(3),251-262。
18.陳振宇、陳均維、陳國威、林詠喬(2019) 。坡地降雨致災熱區警戒模式。中華水土保持學報,50(1),1-10。
19.陳莉、魏曉萍、王泰盛(2004)。監督式分類方法於遙測影像判釋之研究。農業工程學報,50(3),59-70。
20.陳棋炫、王婷慧、蘇俊陽、趙韋安、陳勉銘、費立沅(2017)。利用多時期山崩目錄評估山崩發生度-以曾文水庫集水區為例。工程環境會刊,36,49-66。
21.陳聯光、游繁結、劉格非、林聖琪、柯明淳 (2009)。莫拉克重大崩塌災害歷程探討。中華水土保持學報,40(4),329-337。
22.游皓麟(2017)。實戰R語言預測分析。松崗資產管理股份有限公司,初版。
23.黃雅喬、林國峰、張明瑞、何瑞益(2016)。支援向量機於降雨引致崩塌潛勢分析之研究。中國土木水利工程學刊,28(1),57-66。
24.楊子宜(2016)。羅吉斯迴歸運用於降雨誘發之山崩潛勢評估。長榮大學土地管理與開發學系研究所碩士論文。
25.萬絢、張士勳、陳祐耕(2016)。仿生計算在水稻田影像判釋的差異性研究。航測及遙測學刊,21(1),55-64。
26.詹勳全、蔡培珊、張嘉琪、黃文政、吳菁菁(2015)。植生復育區位配置對旗山溪集水區山崩潛勢之影響。中華水土保持學報,46(1),47-60。
27.雷祖強、周天穎、萬絢、楊龍士、許晉嘉(2007)。空間特徵分類器支援向量機之研究。航測及遙測學刊,12(2),145-163。
28.雷祖強、萬絢、黃政翔、歐陽志豪(2013)。建立航測影像稻作坵塊物件生成與時空變化模式之研究。航測及遙測學刊,17(2),95-114。
29.廖浩鈞(2006)。以QuickBird高解析度遙測影像以分類法判釋南二高邊坡保護工程之研究。國立成功大學資源工程學系碩士論文。
30.廖婉妏(2018)。GIS結合羅吉斯迴歸應用於山崩潛勢區脆弱度評估模式之建置。長榮大學土地管理與開發學系研究所碩士論文。
31.趙秋益(2003)。台灣中部陳有蘭溪流域的河階地與地形演育之研究。國立高雄師範大學地理學系研究所碩士學位論文。
32.潘吉齡、林新華、余志鵬、林政億(2009)。高性能鋼材應用於建築結構之研究。建築學報,68,55-70。
33.蔡靜雅(2019)。統計分析結合GIS應用於降雨誘發之坡地崩塌致災風險評估。長榮大學土地管理與開發學系研究所碩士論文。
34.蕭震洋、林伯勳、賴承農、吳佳威、白朝金、吳俊毅、馮正一(2018)。宜蘭縣大忠村一號崩塌地之土砂災害風險評估與調適策略。中華水土保持學報,49(3),131-141。
【外文】
1.Ali, M. Z., Qazi, W., & Aslam, N. (2018). “A comparative study of ALOS-2 PALSAR and landsat-8 imagery for land cover classification using maximum likelihood classifier,” The Egyptian Journal of Remote Sensing and Space Science, 21(1), 29-35.
2.Armas, I., Ionescu, R., & Posner, C. N. (2015). “Flood risk perception along the Lower Danube river, Romania,” Natural Hazards, 79, 1913-1931.
3.Chen, S. C., Ferng, J. W., Wang, Y. T., Wu, T. Y., & Wang, J. J.(2008).“Assessment of disaster resilience capacity of hillslope communities with high risk for geological hazards,” Engineering Geology, 98(3-4), 86-101.
4.Chen, W., Li, W., Chai, H., Hou, E., Ding, X., & Ding, X. (2016). “GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China,” Environmental Earth Sciences volume, 75(1), 63.
5.Chen, Y. R., Chen, J. W., Hsieh, S. C., & Ni, P. N., (2009). “The Application of Remote Sensing Technology to the Interpretation of Land Use for Rainfall-induced Landslides Based on Genetic Algorithms and Artificial Neural Networks,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS), 2(2), 87-95.
6.Chen, Y. R., Ni, P. N., & Tsai, K. J. (2013). “Construction of a sediment disaster risk assessment model,” Environmental Earth Sciences, (70), 115-129.
7.Cohen, J. (1960). “A coefficient of agreement for nominal scales,” Educational and Psychological. Measurement, 20(1), 37-46.
8.Corominas, J., Van Westen, C. J., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., & Smith, J. T. (2014). “Recommendations for the quantitative analysis of landslide risk,” Bulletin of engineering geology and the environment, 73(2), 209-263.
9.Cortes, C., & Vapnik, V. (1995). “Support-vector networks,” Mach. Learn, 20, 273-297.
10.Dai, F. C., & Lee, C. F. (2002). “Landslide risk assessment and management: an overview,” Engineering Geology, 64(1), 65-87.
11.Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., Dhital, M. R., & Althuwaynee, O. F. (2013). “Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya,” Natural Hazards, 65(1), 135-165.
12.Efron, B. (1979). “Bootstrap Methods: Another Look at the Jackknife,” The Annals of Statistics, 7(1), 1-26.
13.ERDAS Worldwide Headquarters. (2012). “ERDAS IMAGINE Tour Guide,” ERDAS.
14.Fawcett, T. (2006). “An introduction to ROC analysis,” Pattern Recognition Letters, 27(8), 861-874.
15.Haralick, R. M., Shanmugam, K., & Dinsten, I. (1973). “Textural feature for image classification,” IEEE Transactions on System, Man, and Cybernetic, 3(6), 610-621.
16.Heckerman, D. (1986). “Probabilistic interpretation of MYCIN’s certainty factors,” Machine Intelligence and Pattern Recognition, 4, 167-196.
17.Ho, T. K. (1998). “The Random Subspace Method for Constructing Decision Forests,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(8), 832-844.
18.ISRM. (1981). “Rock Characterization, Testing and Monitoring,” Pergamon Press.
19.Kanungo, D. P., Sarkar, S., & Sharma, S. (2011). “Combining neural network with fuzzy, certainty factor and likelihood ratio concepts for spatial prediction of landslides,” Natural Hazards, 59, 1491.
20.Liu, P., Choo, K. R., Wang, L., & Huang, F. (2017). “SVM or deep learning? A comparative study on remote sensing image classification,” Soft Computing, 21(23), 7053-7065.
21.Liu, S. C., Fu, C., Shiu, C. J., Chen, J. P., & Wu, F. (2009). “Temperature dependence of global precipitation extremes,” Geophysical Research Letters, 36(17).
22.Metz, C. E. (1978). “Basic principles of ROC analysis,” Seminars in Nuclear Medicine, 8(4), 283-298.
23.Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Mohammadi, M., & Moradi, R. (2013). “Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz Watershed, Iran,” Arabian Journal of Geosciences volume, 6(7), 2351-2365.
24.Romeo, R. W., Floris, M., & Veneri, F. (2006). “Area-scale landslide hazard and risk assessment,” Environmental Geology, 51(1), 1-13.
25.Shortliffe, E H., & Buchanan, G. G. (1975). “A model of inexact reasoning in medicine,” Mathematical Biosciences, 23(3-4), 351-379.
26.Sklansky, J. (1978). “Image Segmentation and Feature Extraction,” IEEE Trans. Syst., Man Cybern, 8(4), 238-247.
27.United Nations, International Strategy for Disaster Reduction (UN/ISDR) (2004). “Living with Risk: A Global Review of Disaster Reduction Initiatives,” United Nations Publication, Geneva.
28.Vandenberghe, J., Gracheva, R., & Sorokin, A. (2010). “Postglacial floodplain development and Mesolithic–Neolithic occupation in the Russian forest zone,” Proceedings of the Geologists' Association, 121(2), 229-237.
29.Walker, G. A. (2002). “Common statistical methods for clinical research with SAS examples, second edition,” SAS Institute.
30.Wan, S., Lei, T. C., & Chou, T. Y. (2010). “An enhanced supervised spatial decision support system of image classification: consideration on the ancillary information of paddy rice area,” International Journal of Geographical Information Science, 24(4), 623-642.
31.Wang, S. M. (2018). “Risk Assessment of Rainfall-induced Landslides for Mountain Communities,” Chang Jung Christian University, Tainan.
32.Wang, Y. L. (2018). “The Assessment of Rainfall-induced Landslides Using Data Mining Techniques,” Chang Jung Christian University, Tainan.
33.Woolderink, H. A. G., Kasse, C., Cohen, K. M., Hoek, W. Z., & Van Balen, R. T. (2018). “Spatial and temporal variations in river terrace formation, preservation, and morphology in the Lower Meuse Valley,” The Netherlands. Quaternary Research, 91(2), 548-569.
34.Wu, T., Li, C. H, Wei, S. P., Chen, W. B., Chen, Y. M., Su, Y. F., Liu, J. J., & Shih, H. J. (2016). “A comprehensive disaster impact assessment of extreme rainfall events under climate change: a case study in Zheng-wen river basin, Taiwan,” Environmental Earth Sciences, 75, 597.
【網站資料】
1.互動國際數位,https://www.esri.com。
2.內政部戶政司全球資訊網,https://www.ris.gov.tw/app/portal。
3.水利署第七河川局,https://www.wra07.gov.tw/12594/12595/12602/12605/70918/
4.交通部中央氣象局,https://www.cwb.gov.tw/V8/C/。
5.行政院農業委員會林務局自然保育網,https://conservation.forest.gov.tw/0000132。
6.高雄市內門區公所網站,https://neimen.kcg.gov.tw/。
7.高雄市甲仙區公所網站,https://jiasian.kcg.gov.tw/Default.aspx。
8.高雄市杉林區公所網站,https://shanlin.kcg.gov.tw/。
9.高雄市那瑪夏區公所網站,https://namasia.kcg.gov.tw/Default.aspx。
10.高雄市旗山區公所網站,https://cishan88.kcg.gov.tw/Default.aspx。
11.經濟部中央地質調查所,https://www.moeacgs.gov.tw/。
12.經濟部水利署網站,https://www.wra.gov.tw/。
13.維基百科,https://zh.wikipedia.org。

電子全文 電子全文(網際網路公開日期:20250824)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊