跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/21 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭佳敏
研究生(外文):Chia-Min Peng
論文名稱:子寶草抑制肺癌細胞CL1-5的活性之研究
論文名稱(外文):Study of the cytotoxicity of Kalanchoe laetivirens Descoings on lung cancer cells CL1-5
指導教授:林民昆
指導教授(外文):Ming-Kuem Lin
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:中國藥學暨中藥資源學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:88
中文關鍵詞:子寶草中草藥肺癌細胞凋亡細胞自嗜細胞週期乾旱處理不同部位細胞存活率
外文關鍵詞:Kalanchoe laetivirensherbslung cancerapoptosisautophagycell cycledrought treatmentdifferent partcell viability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Contents i
Contents of Tables iii
Contents of Figures iv
摘要 v
Abstract vi
1. Introduction 1
1.1 Cancer 1
1.2 Lung cancer 2
1.3 Cell death 4
1.3.1 Apoptosis 4
1.3.2 Autophagy 5
1.3.3 Cell cycle 7
1.4 Secondary metabolites in plants 9
1.5 Kalanchoe laetivirens Descoings 11
1.6 Herbs and natural compounds in anti-lung cancer studies 13
2. Materials and methods 14
2.1 Experimental flow chart (Figure 1) 14
2.2 Materials, reagents, and antibodies 14
2.3 Cell culture 15
2.3.1 Cell thawing 15
2.3.2 Cell subculture 15
2.3.3 Cell freeze 15
2.4 Preparation of the methanol extracts from K. laetivirens 16
2.5 The procedure of partition from KLM 16
2.6 Cell viability assay 17
2.7 High-performance liquid chromatography analysis 17
2.8 Determination of total phenolic acids 18
2.9 Determination of total flavonoids 18
2.10 Apoptosis analysis 19
2.11 Cell cycle analysis 19
2.12 Western blot analysis 20
2.12.1 Cell seeding and drug treatment 20
2.12.2 Protein extraction from cells 21
2.12.3 Protein quantification 21
2.12.4 Separation of protein with SDS-PAGE 22
2.12.5 Protein transfer 22
2.12.6 Antibody staining 23
2.13 Comparative proteomic analysis 23
2.13.1 Cell seeding and drug treatment 24
2.13.2 Protein extraction from cells 24
2.13.3 Protein Purification 24
2.13.4 8-plex iTRAQ labeling 25
2.13.5 High-pH RPLC fractionation 25
2.13.6 NanoLC-MS/MS analysis 25
2.13.7 Data analysis 26
2.14 Statistic analysis 27
3. Results 28
3.1 80 %, 90 %, and 100 % methanol extraction of K. laetivirens inhibited cell viability on CL1-5 cells 28
3.2 One and two-year-old K. laetivirens inhibited cell viability on CL1-5 cells 28
3.3 Different part of K. laetivirens inhibited cell viability on CL1-5 cells 29
3.4 The drought treatment of K. laetivirens inhibited cell viability on CL1-5 cells 29
3.5 Different site of K. laetivirens inhibited cell viability on CL1-5 cells 30
3.6 Four different fraction of K. laetivirens inhibited cell viability on CL1-5 cells 30
3.7 The HPLC analysis 31
3.7.1 The analyses of HPLC on KL80M, KL90M, and KLM 31
3.7.2 The analyses of HPLC on KLM-1Y and KLM 31
3.7.3 The analyses of HPLC on KLSM, KLLM, and KLM 32
3.7.4 The analysis of HPLC on KLM-1Y, KLD2WM, and KLD4WM 32
3.7.5 The analyses of HPLC on KLNUpM and KLNDnM 32
3.7.6 The analyses of HPLC on KLM-A, KLM-B, and KLM 33
3.7.7 The analyses of HPLC on KLM-C, KLM-D, and KLM 33
3.8 The content of phenolic acid and flavonoid 34
3.9 The examination of IC50 of KLM-C on CL1-5 cells 34
3.10 The examination of IC50 of KLM-C on dendritic cells 34
3.11 The effects of KLM-C on apoptosis 35
3.12 The effects of KLM-C on cell cycle 35
3.13 The effects of KLM-C on the apoptosis-related proteins 36
3.14 The effects of KLM-C on the survival and autophagy-related proteins 36
3.15 Comparative proteomic analysis 37
4. Discussion 39
5. Conclusion 43
6. References 81
1.Cooper JP, Youle RJ. Balancing cell growth and death. Curr Opin Cell Biol. 2012;24(6):802-803.
2.National cancer institute. What is cancer? 2015; https://www.cancer.gov/about-cancer/understanding/what-is-cancer.
3.American cancer society. What is cancer? 2015; https://www.cancer.org/cancer/cancer-basics/what-is-cancer.html.
4.World Health Organization. Cancer. https://www.who.int/health-topics/cancer#tab=tab_1.
5.Montesano R, Hall J. Environmental causes of human cancers. European Journal of Cancer. 2001;37:67-87.
6.Migliore L, Coppede F. Genetic and environmental factors in cancer and neurodegenerative diseases. Mutat Res. 2002;512(2-3):135-153.
7.Wald NJ, Nanchahal K, Thompson SG, Cuckle HS. Does breathing other people''s tobacco smoke cause lung cancer? Lung Cancer. 1987;3(2).
8.Bergstrom A, Pisani P, Tenet V, Wolk A, Adami HO. Overweight as an avoidable cause of cancer in Europe. International Journal of Cancer. 2001;92(6):927-927.
9.PhiHip RL. Role of Life-style and Dietary Habits in Risk of Cancer among Seventh-Day Adventists''. Cancer Reserch 1975;35:3513-3522.
10.Cardis E, Vrijheid M, Blettner M, et al. The 15-Country Collaborative Study of Cancer Risk among Radiation Workers in the Nuclear Industry: estimates of radiation-related cancer risks. Radiat Res. 2007;167(4):396-416.
11.Fraumeni JF. Respiratory carcinogenesis: an epidemiologic appraisal. J Natl Cancer Inst. 1975;55(5):1039-1046.
12.Mashberg A, Boffetta P, Winkelman R, Garfinkel L. Tobacco smoking, alcohol drinking, and cancer of the oral cavity and oropharynx among U.S. veterans. Cancer. 1993;72(4):1369-1375.
13.Padma VV. An overview of targeted cancer therapy. Biomedicine (Taipei). 2015;5(4):19.
14.Fidler MM, Bray F, Soerjomataram I. The global cancer burden and human development: A review. Scand J Public Health. 2018;46(1):27-36.
15.Fidler MM, Soerjomataram I, Bray F. A global view on cancer incidence and national levels of the human development index. Int J Cancer. 2016;139(11):2436-2446.
16.Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34.
17.Shivapurkar N, Reddy J, Chaudhary PM, Gazdar AF. Apoptosis and lung cancer: a review. J Cell Biochem. 2003;88(5):885-898.
18.肺癌研究委員會,肺癌臨床指引,國家衛生研究院。2004:39-65.
19.馬偕紀念醫院,肺癌的分類/分期。 http://www.mmh.org.tw/taitam/che_int/index4_1_LC04.html.
20.Dwight T. Janerich, W. Douglas Thompson, Luis R. Varela, et al. Lung cancer and exposure to tobacco smoke in the household. Lung Cancer. 1991;7(3).
21.Raaschou-Nielsen O, Andersen ZJ, Beelen R, et al. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). The Lancet Oncology. 2013;14(9):813-822.
22.Ko YC, Lee CH, Chen MJ, et al. Risk factors for lung cancer among nonsmoking Illinois residents. Lung Cancer. 1993;10(3-4).
23.Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship. Mayo Clinic Proceedings. 2008;83(5):584-594.
24.Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
25.Couraud S, Zalcman G, Milleron B, Morin F, Souquet PJ. Lung cancer in never smokers--a review. Eur J Cancer. 2012;48(9):1299-1311.
26.Sun S, Schiller JH, Gazdar AF. Lung cancer in never smokers--a different disease. Nat Rev Cancer. 2007;7(10):778-790.
27.Voss AK, Strasser A. The essentials of developmental apoptosis. F1000Res. 2020;9.
28.D''Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582-592.
29.Cohen GM, Sun X-M, Fearnhead H, et al. Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes. The Journal of Immunology. 1994;153(2):507-516.
30.Nishida K, Yamaguchi O, Otsu K. Crosstalk between autophagy and apoptosis in heart disease. Circ Res. 2008;103(4):343-351.
31.Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nature reviews Molecular cell biology. 2008;9(1):47-59.
32.Cain K, Bratton SB, Cohen GM. The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie. 2002;84(2-3):203-214.
33.Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Molecular Cell. 2002;9(2):423-432.
34.Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin. 2005;55(3):178-194.
35.Ashkenazi A. Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 2008;19(3-4):325-331.
36.Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi AJI. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity. 2000;12(6):611-620.
37.Kim JH, Lee SY, Oh SY, et al. Methyl jasmonate induces apoptosis through induction of Bax/Bcl-XS and activation of caspase-3 via ROS production in A549 cells. Oncology Reports. 2004;12(6):1233-1238.
38.Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239-257.
39.LeBlanc H, Lawrence D, Varfolomeev E, et al. Tumor-cell resistance to death receptor–induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nature medicine. 2002;8(3):274-281.
40.Levine B. autophagy and cancer. nature. 2007;446.
41.Yang Z, Goronzy JJ, Weyand CM. Autophagy in autoimmune disease. J Mol Med (Berl). 2015;93(7):707-717.
42.Yang Z, Zhong L, Zhong S, Xian R, Yuan B. Hypoxia induces microglia autophagy and neural inflammation injury in focal cerebral ischemia model. Experimental and Molecular Pathology. 2015;98(2):219-224.
43.Dunn WA. Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends in Cell Biology. 1994;4(4):139-143.
44.David C. Rubinsztein, Jason E. Gestwicki, Leon O. Murphy, Klionsky DJ. Potential therapeutic applications of autophagy. Nature Reviews Drug Discovery 2007;6(4):304-312.
45.Khandia R, Dadar M, Munjal A, et al. A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells. 2019;8(7).
46.Galluzzi L, Baehrecke EH, Ballabio A, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017;36(13):1811-1836.
47.Abounit K, Scarabelli TM, McCauley RB. Autophagy in mammalian cells. World Journal of Biological Chemistry. 2012;3(1):1.
48.Moreau K, Rubinsztein DC. The plasma membrane as a control center for autophagy. Autophagy. 2012;8(5):861-863.
49.Sharma V, Verma S, Seranova E, Sarkar S, Kumar D. Selective autophagy and xenophagy in infection and disease. Frontiers in Cell and Developmental Biology. 2018;6:147.
50.Masclaux-Daubresse C, Chen Q, Have M. Regulation of nutrient recycling via autophagy. Curr Opin Plant Biol. 2017;39:8-17.
51.Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS letters. 2010;584(7):1287-1295.
52.Denton D, Kumar S. Autophagy-dependent cell death. Cell Death Differ. 2019;26(4):605-616.
53.Morishita H, Mizushima N. Diverse Cellular Roles of Autophagy. Annu Rev Cell Dev Biol. 2019;35:453-475.
54.Massague J. G1 cell-cycle control and cancer. Nature. 2004;432(7015):298-306.
55.Norbury C, Nurse P. Animal cell cycles and their control. Annu Rev Biochem. 1992;61:441-470.
56.Malumbres M, Barbacid M. To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer. 2001;1(3):222-231.
57.King KL, Cidlowski JA. CELL CYCLE REGULATION AND APOPTOSIS. Annu Rev Physiol 1998;60(1):601-617.
58.Johnson DG, Walker CL. Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol. 1999;39:295-312.
59.Mohr PE, Tunis SR. Medical and pharmacy coverage decision making at the population level. Journal of Managed Care Pharmacy 2014;20(6):547-554.
60.Kabera JN, Semana E, Mussa AR, He X. Plant Secondary Metabolites: Biosynthesis, Classification, Function and Pharmacological Classification, Function and Pharmacological Properties. Journal of Pharmacy and Pharmacology. 2014;2:377-392.
61.Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res. 2019;52(1):39.
62.Ramakrishna A, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 2011;6(11):1720-1731.
63.Kliebenstein DJ. Plant defense compounds: systems approaches to metabolic analysis. Annual Review of Phytopathology. 2012;50:155-173.
64.Bourgaud F, Gravot A, Milesi S, Gontier E. Production of plant secondary metabolites: a historical perspective. Plant Science. 2001;161(5):839-851.
65.Shao HB, Guo QJ, Chu LY, et al. Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids Surf B Biointerfaces. 2007;54(1):37-45.
66.Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem. 2013;72:1-20.
67.Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism. Plant Cell. 1995;7(7):1085.
68.Chalker-Scott L, Fuchigami L. The role of phenolic compounds in plant stress responses. In: Low temperature stress physiology in crops. CRC Press; 2018:67-80.
69.Narayani M, Srivastava S. Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochemistry Reviews. 2017;16(6):1227-1252.
70.Kroymann J. Natural diversity and adaptation in plant secondary metabolism. Curr Opin Plant Biol. 2011;14(3):246-251.
71.Tânia da S. Agostini-Costa, Roberto F. Vieir, Humberto R. Bizzo, Dâmaris Silveira, Gimenes MA. Secondary metabolites. Chromatography and Its Applications. 2012.
72.Zhelifonova V, Antipova T, Kozlovsky A. Secondary metabolites in taxonomy of the Penicillium fungi. Microbiology. 2010;79(3):277-286.
73.Frisvad JC, Andersen B, Thrane U. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycological Research. 2008;112(2):231-240.
74.Ravishankar G, Venkataraman LJCS. Food applications of plant cell cultures. Current Science. 1990:914-920.
75.De Luca V, Salim V, Atsumi SM, Yu F. Mining the biodiversity of plants: a revolution in the making. Science. 2012;336(6089):1658-1661.
76.Wurtzel ET, Kutchan TMJS. Plant metabolism, the diverse chemistry set of the future. Science. 2016;353(6305):1232-1236.
77.農業知識入口網,子寶草。 https://kmweb.coa.gov.tw/theme_data.php?theme=plant_illustration&id=393.
78.Kaewpiboon C, Srisuttee R, Malilas W, et al. Extract of Bryophyllum laetivirens reverses etoposide resistance in human lung A549 cancer cells by downregulation of NF-κB. Oncol Rep. 2014;31(1):161-168.
79.Shaw JMH. An investigation of the cultivated Kalanchoe daigremontiana group, with a checklist of Kalanchoe cultivars. Royal Horticultural Society. 2008;3:17-79.
80.Eid O, Ezzat S, Gonaid M, Choucry M. Crassulaceae (chemistry and pharmacology) - A review. Future Journal of Pharmaceutical Sciences. 2018;4(2):234-240.
81.Kolodziejczyk-Czepas J, Stochmal A. Bufadienolides of Kalanchoe species: an overview of chemical structure, biological activity and prospects for pharmacological use. Phytochem Rev. 2017;16(6):1155-1171.
82.Mahata S, Maru S, Shukla S, et al. Anticancer property of Bryophyllum pinnata (Lam.) Oken. leaf on human cervical cancer cells. BMC Complement Altern Med. 2012;12:15.
83.Kuo PC, Kuo TH, Su CR, Liou MJ, Wu TS. Cytotoxic principles and α-pyrone ring-opening derivatives of bufadienolides from Kalanchoe hybrida. Tetrahedron. 2008;64(15):3392-3396.
84.Wu PL, Hsu YL, Wu TS, Bastow KF, Lee KH. Kalanchosides A—C, New Cytotoxic Bufadienolides from the Aerial Parts of Kalanchoe gracilis. ChemInform. 2007;38(10):5207-5210.
85.Huang HC, Lin MK, Yang HL, et al. Cardenolides and bufadienolide glycosides from Kalanchoe tubiflora and evaluation of cytotoxicity. Planta Med. 2013;79(14):1362-1369.
86.Haminiuk CW, Plata-Oviedo MS, de Mattos G, Carpes ST, Branco IG. Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. J Food Sci Technol. 2014;51(10):2862-2866.
87.Chen CC, Kao CP, Chiu MM, Wang SH. The anti-cancer effects and mechanisms of Scutellaria barbata D. Don on CL1-5 lung cancer cells. Oncotarget. 2017;8(65):109340-109357.
88.Lee CY, Sher HF, Chen HW, et al. Anticancer effects of tanshinone I in human non-small cell lung cancer. Mol Cancer Ther. 2008;7(11):3527-3538.
89.Huang TT, Lan YW, Chen CM, et al. Antrodia cinnamomea induces anti-tumor activity by inhibiting the STAT3 signaling pathway in lung cancer cells. Sci Rep. 2019;9(1):5145.
90.Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Front Oncol. 2014;4:64.
91.Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem. 2005;280(37):32081-32089.
92.陳義凱,子寶草甲醇萃取物誘導人類血癌HL-60細胞進行細胞凋亡和細胞自噬,2018。
93.Ibrahim W, Zhu YM, Chen Y, Qiu CW, Zhu S, Wu F. Genotypic differences in leaf secondary metabolism, plant hormones and yield under alone and combined stress of drought and salinity in cotton genotypes. Physiol Plant. 2019;165(2):343-355.
94.Gonzalez-Villagra J, Rodrigues-Salvador A, Nunes-Nesi A, Cohen JD, Reyes-Diaz MM. Age-related mechanism and its relationship with secondary metabolism and abscisic acid in Aristotelia chilensis plants subjected to drought stress. Plant Physiol Biochem. 2018;124:136-145.
95.Zhao J, Davis LC, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology advances. 2005;23(4):283-333.
96.Ferrat L, Pergent-Martini C, Roméo M. Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. Aquatic Toxicology. 2003;65(2):187-204.
97.Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol. 2003;14(2):194-199.
98.Supratman U, Fujita T, Akiyama K, Hayashi H. New insecticidal bufadienolide, bryophyllin C, from Kalanchoe pinnata. Bioscience, Biotechnology, and Biochemistry. 2000;64(6):1310-1312.
99.Cunha Filho GA, Schwartz CA, Resck IS, et al. Antimicrobial activity of the bufadienolides marinobufagin and telocinobufagin isolated as major components from skin secretion of the toad Bufo rubescens. Toxicon. 2005;45(6):777-782.
100.Ma XC, Zhang BJ, Xin XL, et al. Simultaneous quantification of seven major bufadienolides in three traditional Chinese medicinal preparations of chansu by HPLC-DAD. Natural Product Communications. 2009;4(2):179-184
101.De Tito S, Hervas JH, van Vliet AR, Tooze SA. The Golgi as an Assembly Line to the Autophagosome. Trends Biochem Sci. 2020;45(6):484-496.
102.Durieux AC, Prudhon B, Guicheney P, Bitoun M. Dynamin 2 and human diseases. J Mol Med (Berl). 2010;88(4):339-350.
103.Xu C, Du Z, Ren S, Liang X, Li H. MiR-129-5p sensitization of lung cancer cells to etoposide-induced apoptosis by reducing YWHAB. J Cancer. 2020;11(4):858-866.
104.Wang Y, Zhang P, Liu Z, et al. CUL4A overexpression enhances lung tumor growth and sensitizes lung cancer cells to erlotinib via transcriptional regulation of EGFR. Mol Cancer. 2014;13:252.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊