跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 13:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮雅羚
研究生(外文):Ya-Ling Juan
論文名稱:第二型糖尿病患其血壓變異、血糖變異及血壓變異與血糖變異之聯合效應與死亡之相關
論文名稱(外文):The Variability of Blood Pressure, Glycemic Factor and Their Joint Effects on Mortality in Patients with Type 2 Diabetes
指導教授:李采娟李采娟引用關係
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:公共衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:111
中文關鍵詞:第二型糖尿病血糖變異血壓變異聯合效應死亡
外文關鍵詞:Type 2 diabetesvisit-to-visit variability of BPvisit-to-visit variability of glycemic factorsjoint effectsmortality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
List of Contents
Chapter 1 1
Introduction 1
1.1 Research background and motivation 2
1.2 Research importance 4
1.3 Research purpose 6
1.4 Research question and hypothesis 7
1.5 Definitions 8
1.6 Organization of the dissertation 8
Chapter 2 9
Literature review 9
2.1 Risk factors of mortality in Type 2 diabetes 9
2.2 Prior studies regarding visit-to-visit variability of glycemic factors in T2DM 11
2.3 Prior studies regarding visit-to-visit variability of blood pressure factors in T2DM 20
2.4 Prior studies regarding visit-to-visit variability of BP and glycemic factors simultaneously in T2DM 27
Chapter 3 32
Research methods 32
3.1 Research plan 32
3.2 Study subjects 32
3.3 Conceptual framework 34
3.4 Measurements 36
3.5 Data collection process 42
3.6 Data statistics and analysis 43
Chapter 4 45
Results 45
4.1 Baseline characteristics according to outcome status 45
4.2 Baseline characteristics according to tertile of coefficient of variation in systolic blood pressure, diastolic blood pressure, fasting plasma glucose and hemoglobin A1c 57
4.3 Survival curves of all-cause mortality according to tertile of coefficient of variation of systolic blood pressure, diastolic blood pressure, fasting plasma glucose and hemoglobin A1C in type 2 diabetes 78
4.4 Incidence rates of all-cause mortality according to according to tertiles of coefficient of variation of systolic blood pressure, diastolic blood pressure, fasting plasma glucose and hemoglobin A1C in type 2 diabetes 81
4.5 The hazard ratios of all-cause mortality according to tertiles of the annual coefficient of variation of blood pressure and glycemic variation factors separately in type 2 diabetes 83
4.6 The hazard ratios of all-cause mortality, expanded cardiovascular mortality, and non-expanded cardiovascular mortality according to the annual coefficient of variation of blood pressure and glycemic factors simultaneously in type 2 diabetes 86
Chapter 5 99
Discussion/ Conclusion 99
Reference 105
1.Zimmet, Paul Z., et al., Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol, 2014. 2(1): p. 56-64.
2.Chen, L., Magliano, D. J., and Zimmet, P. Z., The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nat Rev Endocrinol, 2011. 8(4): p. 228-36.
3.Danaei, G., et al., National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet, 2011. 378(9785): p. 31-40.
4.World Health Organization, . Diabetes. 2020 APR 5; Available from: https://www.who.int/health-topics/diabetes#tab=tab_1.
5.Saeedi, P., et al., Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract, 2019. 157: p. 107843.
6.World Health Organization, . Global report on diabetes. Geneva: World Health Organization,. 2016.
7.World Health Organization, . Classification of diabetes mellitus 2019. Geneva: World Health Organization,. 2019.
8.International Diabetes Federation, . IDF Diabetes Atlas Ninth edition. 2019.
9.World Health Organization, . The top 10 causes of death. 2018 May 24; Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
10.衛生福利部統計處, . 107年國人死因統計結果. 2019 JUN 21; Available from: https://www.mohw.gov.tw/cp-16-48057-1.html.
11.Sheen, Y. J., et al., Trends in prevalence and incidence of diabetes mellitus from 2005 to 2014 in Taiwan. J Formos Med Assoc, 2019. 118 Suppl 2: p. S66-S73.
12.Li, H. Y., et al., Trends of mortality in diabetic patients in Taiwan: A nationwide survey in 2005-2014. J Formos Med Assoc, 2019. 118 Suppl 2: p. S83-S89.
13.International Diabetes Federation Guideline Development, Group, Global guideline for type 2 diabetes. Diabetes Res Clin Pract, 2014. 104(1): p. 1-52.
14.American Diabetes Association, . Standards of Medical Care in Diabetes-2019 Abridged for Primary Care Providers. Clin Diabetes, 2019. 37(1): p. 11-34.
15.Lin, Kenneth Yu Hsiang, Huang, Kai-Ju, and Yang, Chun-Pai, Glycemic Variability: Clinical and Prognostic Signifcance. Diabetes Res Open J, 2015. 1(2): p. 48-53.
16.Quagliaro, Lisa, et al., Intermittent High Glucose Enhances Apoptosis Related to Oxidative Stress in Human Umbilical Vein Endothelial Cells. DIABETES, 2003. 52: p. 2795-2804.
17.Ceriello, Antonio, et al., Oscillating Glucose Is More Deleterious to Endothelial Function and Oxidative Stress Than Mean Glucose in Normal and Type 2 Diabetic Patients. Diabetes, 2008. 57 (5): p. 1349-54.
18.Wang, J., et al., Visit-to-visit blood pressure variability is a risk factor for all-cause mortality and cardiovascular disease: a systematic review and meta-analysis. J Hypertens, 2017. 35(1): p. 10-17.
19.Chiriacò, Martina, et al., Association between blood pressure variability, cardiovascular disease and mortality in type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab, 2019. 21(12): p. 2587-2598.
20.Parati, G., et al., Prognostic value of blood pressure variability and average blood pressure levels in patients with hypertension and diabetes. Diabetes Care, 2013. 36 Suppl 2: p. S312-24.
21.Hirakawa, Yoichiro, et al., Impact of Visit-to-Visit Glycemic Variability on the Risks of Macrovascular and Microvascular Events and All-Cause Mortality in Type 2 Diabetes: The ADVANCE Trial. Diabetes Care, 2014. 37: p. 2359-2365.
22.Bouchi, Ryotaro, et al., Fluctuations in HbA1c are associated with a higher incidence of cardiovascular disease in Japanese patients with type 2 diabetes. J Diabetes Investig, 2012. 3(2): p. 148-55.
23.Prentice, J. C., Pizer, S. D., and Conlin, P. R., Identifying the independent effect of HbA1c variability on adverse health outcomes in patients with Type 2 diabetes. Diabet Med, 2016. 33(12): p. 1640-1648.
24.Wan, Eric Yuk Fai, et al., Association of variability in hemoglobin A1c with cardiovascular diseases and mortality in Chinese patients with type 2 diabetes mellitus - A retrospective population-based cohort study. J Diabetes Complications, 2016. 30(7): p. 1240-7.
25.Lin, Cheng-Chieh, et al., Annual fasting plasma glucose variation increases risk of cancer incidence and mortality in patients with type 2 diabetes: the Taichung Diabetes Study. Endocr Relat Cancer, 2012. 19(4): p. 473-83.
26.Lin, Cheng-Chieh, et al., Variation of fasting plasma glucose: a predictor of mortality in patients with type 2 diabetes. Am J Med, 2012. 125(4): p. 416 e9-18.
27.Xu, Dongli, et al., Fasting plasma glucose variability and all-cause mortality among type 2 diabetes patients: a dynamic cohort study in Shanghai, China. Sci Rep, 2016. 6: p. 39633.
28.Ma, Wen-Ya, et al., Variability in hemoglobin A1c predicts all-cause mortality in patients with type 2 diabetes. J Diabetes Complications, 2012. 26(4): p. 296-300.
29.Takao, Toshiko, et al., Association between HbA1c variability and mortality in patients with type 2 diabetes. J Diabetes Complications, 2014. 28(4): p. 494-9.
30.Orsi, Emanuela, et al., Haemoglobin A1c variability is a strong, independent predictor of all-cause mortality in patients with type 2 diabetes. Diabetes Obes Metab, 2018. 20(8): p. 1885-93.
31.Critchley, Julia A., et al., Variability in Glycated Hemoglobin and Risk of Poor Outcomes Among People With Type 2 Diabetes in a Large Primary Care Cohort Study. Diabetes Care, 2019. 42(12): p. 2237-46.
32.Sheng, Chang-Sheng, et al., Prognostic significance of long-term HbA1c variability for all-cause mortality in the ACCORD Trial. Diabetes Care, 2020. 43: p. 1185-90.
33.Tseng, Juei-Yu, et al., Effect of mean HbA1c on the association of HbA1c variability and all-cause mortality in patients with type 2 diabetes. Diabetes Obes Metab, 2020. 22(4): p. 680-7.
34.Hsieh, Yi-Ting, et al., Visit-to-visit variability in blood pressure strongly predicts all-cause mortality in patients with type 2 diabetes: a 5.5-year prospective analysis. Eur J Clin Invest, 2012. 42(3): p. 245-53.
35.Hata, Jun, et al., Effects of visit-to-visit variability in systolic blood pressure on macrovascular and microvascular complications in patients with type 2 diabetes mellitus: the ADVANCE trial. Circulation, 2013. 128(12): p. 1325-34.
36.Mcmullan, Ciaran J., et al., Visit-to-visit variability in blood pressure and kidney and cardiovascular outcomes in patients with type 2 diabetes and nephropathy: a post hoc analysis from the RENAAL study and the Irbesartan Diabetic Nephropathy Trial. Am J Kidney Dis, 2014. 64(5): p. 714-22.
37.Takao, Toshiko, et al., Relationships between the risk of cardiovascular disease in type 2 diabetes patients and both visit-to-visit variability and time-to-effect differences in blood pressure. J Diabetes Complications, 2015. 29(5): p. 699-706.
38.Ohkuma, Toshiaki, et al., Prognostic value of variability in systolic blood pressure related to vascular events and premature death in type 2 diabetes mellitus: The ADVANCE-ON Study. Hypertension, 2017. 70(2): p. 461-8.
39.Wan, Eric Yuk Fai, et al., Association of visit-to-visit variability of systolic blood pressure with cardiovascular disease and mortality in primary care chinese patients with type 2 diabetes-a retrospective population-based cohort study. Diabetes Care, 2017. 40(2): p. 270-9.
40.Bell, Katy J. L., et al., Prognostic impact of systolic blood pressure variability in people with diabetes. PLoS One, 2018. 13(4): p. e0194084.
41.Yu, Zhe-Bin, et al., Association of visit-to-visit variability of blood pressure with cardiovascular disease among type 2 diabetes mellitus patients: A cohort study. Diabetes Metab J, 2019. 43(3): p. 350-67.
42.Verlato, Giacomo Zoppini Giuseppe, et al., Variability of body weight, pulse pressure and glycaemia strongly predict total mortality in elderly type 2 diabetic patients. The Verona Diabetes Study. Diabetes Metab Res Rev, 2008. 24(8): p. 624-8.
43.Takao, Toshiko, et al., The combined effect of visit-to-visit variability in HbA1c and systolic blood pressure on the incidence of cardiovascular events in patients with type 2 diabetes. BMJ Open Diabetes Res Care, 2015. 3(1): p. e000129.
44.Foo, Valencia, et al., HbA1c, systolic blood pressure variability and diabetic retinopathy in Asian type 2 diabetics. J Diabetes, 2016. 9(2): p. 200-7.
45.Ceriello, Antonio, et al., Variability in HbA1c, blood pressure, lipid parameters and serum uric acid, and risk of development of chronic kidney disease in type 2 diabetes. Diabetes Obes Metab, 2017. 19(11): p. 1570-8.
46.Takao, Toshiko, et al., Predictive ability of visit-to-visit variability in HbA1c and systolic blood pressure for the development of microalbuminuria and retinopathy in people with type 2 diabetes. Diabetes Res Clin Pract, 2017. 128: p. 15-23.
47.Yang, Jae Jeong, et al., Association of diabetes with all-cause and cause-specific mortality in Asia: A pooled analysis of more than 1 Million participants. JAMA Netw Open, 2019. 2(4): p. e192696.
48.Bruce, David G, et al., Maternal family history of diabetes is associated with a reduced risk of cardiovascular disease in women with type 2 diabetes the fremantle diabetes study. Diabetes Care, 2010. 33(7): p. 1477-83.
49.Lin, Cheng-Chieh, et al., Impact of lifestyle-related factors on all-cause and cause-specific mortality in patients with type 2 diabetes: the Taichung Diabetes Study. Diabetes Care, 2012. 35(1): p. 105-12.
50.Kwon, Yeongkeun, et al., Body mass index-related mortality in patients with type 2 diabetes and heterogeneity in obesity paradox studies: A dose-response meta-analysis. PLoS One, 2017. 12(1): p. e0168247.
51.Nichols, Gregory A., et al., The association between estimated glomerular filtration rate, albuminuria, and risk of cardiovascular hospitalizations and all-cause mortality among patients with type 2 diabetes. J Diabetes Complications, 2018. 32(3): p. 291-7.
52.Li, Weiqin, et al., HbA1c and all-cause mortality risk among patients with type 2 diabetes. Int J Cardiol, 2016. 202: p. 490-6.
53.Boer, Ian H. De, et al., Diabetes and hypertension: A position statement by the american diabetes association. Diabetes Care, 2017. 40(9): p. 1273-84.
54.Nalysnyk, L., Hernandez-Medina, M., and Krishnarajah, G., Glycaemic variability and complications in patients with diabetes mellitus: evidence from a systematic review of the literature. Diabetes Obes Metab, 2010. 12(4): p. 288-98.
55.Yang, Chun-Pai, et al., Variability of fasting plasma glucose increased risks of diabetic polyneuropathy in T2DM. American Academy of Neurology, 2017. 88: p. 944-51.
56.Su, Jian‑Bin, et al., HbA1c variability and diabetic peripheral neuropathy in type 2 diabetic patients. Cardiovasc Diabetol, 2018. 17(1): p. 47.
57.Lin, Cheng-Chieh, et al., Visit-to-visit variability of fasting plasma glucose as predictor of ischemic stroke: competing risk analysis in a national cohort of Taiwan Diabetes Study. BMC Medicine, 2014. 12(165).
58.Tang, Xixiang, et al., Visit-to-visit fasting plasma glucose variability is an important risk factor for long-term changes in left cardiac structure and function in patients with type 2 diabetes. Cardiovasc Diabetol, 2019. 18(1): p. 50.
59.Li, Chia-Ing, et al., Competing risk analysis on visit-to-visit glucose variations and risk of depression: The Taiwan Diabetes Study. Diabetes Metab, 2019: p. 101116.
60.Chiu, Hsien-Tsai, et al., Visit-to-visit glycemic variability is a strong predictor of chronic obstructive pulmonary disease in patients with type 2 diabetes mellitus: Competing risk analysis using a national cohort from the Taiwan diabetes study. PLoS One, 2017. 12(5): p. e0177184.
61.Wei, Fang, et al., Excessive visit-to-visit glycemic variability independently deteriorates the progression of endothelial and renal dysfunction in patients with type 2 diabetes mellitus. BMC Nephrol, 2016. 17(1): p. 67.
62.Yang, Ya-Fei, et al., Visit-to-visit glucose variability predicts the development of end-stage renal disease in type 2 diabetes: 10-year follow-up of Taiwan diabetes study. Medicine (Baltimore), 2015. 94(44): p. e1804.
63.Forbes, Angus, et al., Mean HbA1c, HbA1c variability, and mortality in people with diabetes aged 70 years and older: a retrospective cohort study. The Lancet Diabetes & Endocrinology, 2018. 6(6): p. 476-86.
64.Gorst, Catherine, et al., Long-term glycemic variability and risk of adverse outcomes: A systematic review and meta-analysis. Diabetes Care, 2015. 38: p. 2354-69.
65.Zhao, Qian, et al., Fasting plasma glucose variability levels and risk of adverse outcomes among patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract, 2019. 148: p. 23-31.
66.Imai, Yutaka, et al., Factors That Affect Blood Pressure Variability A Community-Based Study in Ohasama, Japan. American Journal of Hypertension, 1997. 10: p. 1281–9.
67.Li, T. C., et al., Visit-to-visit blood pressure variability and hip fracture risk in older persons. Osteoporos Int, 2019. 30(4): p. 763-70.
68.Okada, H., et al., Visit-to-visit variability in systolic blood pressure is correlated with diabetic nephropathy and atherosclerosis in patients with type 2 diabetes. Atherosclerosis, 2012. 220(1): p. 155-9.
69.Okada, H., et al., Visit-to-visit blood pressure variability is a novel risk factor for the development and progression of diabetic nephropathy in patients with type 2 diabetes. Diabetes Care, 2013. 36(7): p. 1908-12.
70.Noshad, S., et al., Visit-to-visit blood pressure variability is related to albuminuria variability and progression in patients with type 2 diabetes. J Hum Hypertens, 2014. 28(1): p. 37-43.
71.Takao, T., et al., Visit-to-visit variability in systolic blood pressure predicts development and progression of diabetic nephropathy, but not retinopathy, in patients with type 2 diabetes. J Diabetes Complications, 2014. 28(2): p. 185-90.
72.Sohn, M. W., et al., Visit-to-visit systolic blood pressure variability and microvascular complications among patients with diabetes. J Diabetes Complications, 2017. 31(1): p. 195-201.
73.Yeh, C. H., et al., The risk of diabetic renal function impairment in the first decade after diagnosed of diabetes mellitus is correlated with high variability of visit-to-visit systolic and diastolic blood pressure: a case control study. BMC Nephrol, 2017. 18(1): p. 99.
74.Budiman-Mak, E., et al., Systolic blood pressure variability and lower extremity amputation in a non-elderly population with diabetes. Diabetes Res Clin Pract, 2016. 114: p. 75-82.
75.Kilpatrick, E. S., Rigby, A. S., and Atkin, S. L., A1C variability and the risk of microvascular complications in type 1 diabetes: data from the Diabetes Control and Complications Trial. Diabetes Care, 2008. 31(11): p. 2198-202.
76.Levey, Andrew S., et al., A new equation to estimate glomerular filtration rate. Ann Intern Med, 2009. 150(9): p. 604-12.
77.Lin, Cheng-Chieh, et al., Risks of diabetic nephropathy with variation in hemoglobin A1c and fasting plasma glucose. Am J Med, 2013. 126(11): p. 1017 e1-10.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊