|
1.Liu, S.P., et al., Mouse-induced pluripotent stem cells generated under hypoxic conditions in the absence of viral infection and oncogenic factors and used for ischemic stroke therapy. Stem Cells Dev, 2014. 23(4): p. 421-33. 2.Puculek, M., et al., The morphology and application of stem cells in digestive system surgery. Folia Morphol (Warsz), 2020. 3.Grochowski, C., E. Radzikowska, and R. Maciejewski, Neural stem cell therapy-Brief review. Clin Neurol Neurosurg, 2018. 173: p. 8-14. 4.Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76. 5.Nicola, N.A. and J.J. Babon, Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev, 2015. 26(5): p. 533-44. 6.Ponchio, L., et al., Mitomycin C as an alternative to irradiation to inhibit the feeder layer growth in long-term culture assays. Cytotherapy, 2000. 2(4): p. 281-6. 7.Kim, J.S., et al., Reprogrammed pluripotent stem cells from somatic cells. Int J Stem Cells, 2011. 4(1): p. 1-8. 8.Zhou, Y.Y. and F. Zeng, Integration-free methods for generating induced pluripotent stem cells. Genomics Proteomics Bioinformatics, 2013. 11(5): p. 284-7. 9.Anokye-Danso, F., et al., Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 2011. 8(4): p. 376-88. 10.Ma, X., L. Kong, and S. Zhu, Reprogramming cell fates by small molecules. Protein Cell, 2017. 8(5): p. 328-348. 11.Rim, Y.A., et al., Chondrogenic Differentiation from Induced Pluripotent Stem Cells Using Non-Viral Minicircle Vectors. Cells, 2020. 9(3). 12.Diekman, B.O., et al., Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix. Tissue Eng Part A, 2010. 16(2): p. 523-33. 13.Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7. 14.Schumann, D., et al., Mechanobiological conditioning of stem cells for cartilage tissue engineering. Biomed Mater Eng, 2006. 16(4 Suppl): p. S37-52. 15.Zuk, P.A., et al., Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 2001. 7(2): p. 211-28. 16.Murphy, C., et al., The Potency of Induced Pluripotent Stem Cells in Cartilage Regeneration and Osteoarthritis Treatment. Adv Exp Med Biol, 2018. 1079: p. 55-68. 17.Teramura, T., et al., Induction of mesenchymal progenitor cells with chondrogenic property from mouse-induced pluripotent stem cells. Cell Reprogram, 2010. 12(3): p. 249-61. 18.Guzzo, R.M., et al., Efficient differentiation of human iPSC-derived mesenchymal stem cells to chondroprogenitor cells. J Cell Biochem, 2013. 114(2): p. 480-90. 19.Guzzo, R.M. and H. Drissi, Differentiation of Human Induced Pluripotent Stem Cells to Chondrocytes. Methods Mol Biol, 2015. 1340: p. 79-95. 20.Stromps, J.-P., et al., Chondrogenic Differentiation of Human Adipose-Derived Stem Cells: A New Path in Articular Cartilage Defect Management? BioMed Research International, 2014. 2014: p. 740926. 21.Nejadnik, H., et al., Improved approach for chondrogenic differentiation of human induced pluripotent stem cells. Stem Cell Rev Rep, 2015. 11(2): p. 242-53. 22.Musumeci, G., et al., Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. Int J Mol Sci, 2015. 16(3): p. 6093-112. 23.Yeung, P., et al., Collagen microsphere based 3D culture system for human osteoarthritis chondrocytes (hOACs). Sci Rep, 2019. 9(1): p. 12453. 24.Shi, Y., et al., A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nat Commun, 2019. 10(1): p. 1914. 25.Madaleno, F.O., et al., Prevalence of knee osteoarthritis in former athletes: a systematic review with meta-analysis. Braz J Phys Ther, 2018. 22(6): p. 437-451. 26.Lee, J., et al., Sedentary behavior and physical function: objective evidence from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken), 2015. 67(3): p. 366-73. 27.Neogi, T. and Y. Zhang, Epidemiology of osteoarthritis. Rheum Dis Clin North Am, 2013. 39(1): p. 1-19. 28.Davis, M.A., et al., The association of knee injury and obesity with unilateral and bilateral osteoarthritis of the knee. Am J Epidemiol, 1989. 130(2): p. 278-88. 29.Berenbaum, F., Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage, 2013. 21(1): p. 16-21. 30.Gao, H., et al., Salidroside Alleviates Cartilage Degeneration Through NF-kappaB Pathway in Osteoarthritis Rats. Drug Des Devel Ther, 2020. 14: p. 1445-1454. 31.Greco, K.V., et al., High density micromass cultures of a human chondrocyte cell line: a reliable assay system to reveal the modulatory functions of pharmacological agents. Biochem Pharmacol, 2011. 82(12): p. 1919-29. 32.Kapoor, M., et al., Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol, 2011. 7(1): p. 33-42. 33.Matuska, A., et al., Autologous solution protects bovine cartilage explants from IL-1alpha- and TNFalpha-induced cartilage degradation. J Orthop Res, 2013. 31(12): p. 1929-35. 34.Willard, V.P., et al., Use of cartilage derived from murine induced pluripotent stem cells for osteoarthritis drug screening. Arthritis Rheumatol, 2014. 66(11): p. 3062-72. 35.Findlay, D.M. and G.J. Atkins, Osteoblast-chondrocyte interactions in osteoarthritis. Curr Osteoporos Rep, 2014. 12(1): p. 127-34. 36.Ben David, D., et al., Exposure to pro-inflammatory cytokines upregulates MMP-9 synthesis by mesenchymal stem cells-derived osteoprogenitors. Histochem Cell Biol, 2008. 129(5): p. 589-97. 37.Maldonado, M. and J. Nam, The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int, 2013. 2013: p. 284873. 38.Lee, H.J., et al., Membrane-Free Stem Cell Components Inhibit Interleukin-1alpha-Stimulated Inflammation and Cartilage Degradation in vitro and in vivo: A Rat Model of Osteoarthritis. Int J Mol Sci, 2019. 20(19). 39.Glyn-Jones, S., et al., Osteoarthritis. Lancet, 2015. 386(9991): p. 376-87. 40.Piñeiro-Ramil, M., et al., Cell Therapy and Tissue Engineering for Cartilage Repair. 2018: InTech. 41.Kim, C. and A. Keating, Cell Therapy for Knee Osteoarthritis: Mesenchymal Stromal Cells. Gerontology, 2019. 65(3): p. 294-298. 42.Ko, J.Y., et al., In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials, 2014. 35(11): p. 3571-81. 43.Suchorska, W.M., et al., Comparison of Four Protocols to Generate Chondrocyte-Like Cells from Human Induced Pluripotent Stem Cells (hiPSCs). Stem Cell Rev Rep, 2017. 13(2): p. 299-308. 44.Waese, E.Y. and W.L. Stanford, One-step generation of murine embryonic stem cell-derived mesoderm progenitors and chondrocytes in a serum-free monolayer differentiation system. Stem Cell Res, 2011. 6(1): p. 34-49. 45.Sakurai, H., et al., In vitro modeling of paraxial mesodermal progenitors derived from induced pluripotent stem cells. PLoS One, 2012. 7(10): p. e47078. 46.Zuliani, C.C., et al., Micromass cultures are effective for differentiation of human amniotic fluid stem cells into chondrocytes. Clinics (Sao Paulo), 2018. 73: p. e268. 47.Ito, A., et al., Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems. PLoS One, 2015. 10(5): p. e0128082. 48.Grigull, N.P., et al., Chondrogenic Potential of Pellet Culture Compared to High-Density Culture on a Bacterial Cellulose Hydrogel. Int J Mol Sci, 2020. 21(8). 49.Kuboth, S., J. Kramer, and J. Rohwedel, Chondrogenic differentiation in vitro of murine two-factor induced pluripotent stem cells is comparable to murine embryonic stem cells. Cells Tissues Organs, 2012. 196(6): p. 481-9. 50.Kuboth, S., J. Kramer, and J. Rohwedel, Chondrogenic differentiation in vitro of murine two-factor induced pluripotent stem cells is comparable to murine embryonic stem cells. Cells Tissues Organs, 2012. 196(6): p. 481-489. 51.Gong, G., et al., Direct and progressive differentiation of human embryonic stem cells into the chondrogenic lineage. Journal of cellular physiology, 2010. 224(3): p. 664-671. 52.Grigull, N.P., et al., Chondrogenic Potential of Pellet Culture Compared to High-Density Culture on a Bacterial Cellulose Hydrogel. International Journal of Molecular Sciences, 2020. 21(8): p. 2785. 53.Barlian, A., et al., Chondrogenic differentiation of adipose-derived mesenchymal stem cells induced by L-ascorbic acid and platelet rich plasma on silk fibroin scaffold. PeerJ, 2018. 6: p. e5809. 54.Huang, S.-J., et al., Adipose-Derived Stem Cells: Isolation, Characterization, and Differentiation Potential. Cell Transplantation, 2013. 22(4): p. 701-709.
|