跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 03:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王郁婷
研究生(外文):Yu-Ting Wang
論文名稱:利用誘導性多能幹細胞進行軟骨細胞分化與骨關節炎藥物篩選
論文名稱(外文):Using Induced Pluripotent Stem Cells for Chondrocytes Differentiation and Drug Screening for Osteoarthritis
指導教授:劉詩平
指導教授(外文):Shih-Ping Liu
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:生物醫學研究所碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:60
中文關鍵詞:骨關節炎誘導性多能幹細胞軟骨細胞白介素-1α
外文關鍵詞:osteoarthritisinduced pluripotent stem cellchondrocytesinterleukin-1α
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
骨關節炎(osteoarthritis, OA)是老年人中最常見的肌肉骨骼疾病,其症狀主要是關節疼痛或僵硬。 OA的最重要原因是隨著時間的推移,骨表面保護性關節軟骨的降解和退化,因此也被稱為退化性關節疾病。先前的許多研究表明,具有多能性和發展潛力的幹細胞,例如胚胎幹細胞(embryonic stem cells, ESCs)和誘導性多能幹細胞(induced pluripotent stem cells, iPSCs),可以用作體外分化軟骨細胞,作為研究OA藥物篩選的合適模型。相比之下,iPSCs可以從體細胞中重新編程,並且在免疫排斥上的問題較小,也較不具有道德爭議。我們實驗室先前產生的iPS細胞沒有致癌基因(c-Myc和Klf4)和病毒感染,在缺氧條件下只轉染了兩個轉錄因子(Oct4和Sox2),稱為iPS-OSH[1](補充圖 1)。因此,本研究目的是找出一個簡單、有效的方案,以成功地將iPS-OSH分化為軟骨細胞,並用於OA研究。目前,我們成功地將iPS-OSH分化成為軟骨細胞(其幹細胞相關基因Oct4、Nanog表達水平顯著降低,軟骨形成相關基因Col2a1、Acan表達水平顯著上升),而此軟骨細胞使用細胞激素(cytokine)白介素-1α(interleukin-1α, IL-1α)處理,以模擬OA的發炎環境(其發炎反應相關基因Ccl2表達水平略有上升,軟骨分解代謝相關基因Mmp9、Mmp13與Adamts4表達水平也略有上升)。此一模式將可成為藥物篩選的平台。目前我們也已發現純化物5895s可以降低發炎反應相關基因的表達,未來將用於動物模式測試。此研究將可以開發一個OA藥物篩選平台,用於發現可抑制發炎作用的新藥並研究新藥參與的機制,進而減少或預防骨關節炎的發生。
Osteoarthritis (OA) is a most common musculoskeletal disease in the elderly, and the symptoms are mostly joint pain or stiffness. The most important cause of OA is the degradation and degeneration of protective articular cartilage on the bone surface over time, so it is also called degenerative joint disease. Many studies have previously indicated that stem cells with pluripotency and developmental potential, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), can be used a suitable in vitro model for studying the differentiation of chondrocytes and drug screening of OA. iPSCs can be generated from somatic cells and is less controversial with immune rejection and ethical issues. Our laboratory generated an iPS cell line without oncogenes (c-Myc and Klf4) and viral infection, which transfected only two factors (Oct4 and Sox2) under hypoxic conditions, named iPS-OSH. Therefore, the aim of this study is to find out a simple and effective method to successfully differentiate iPS-OSH into chondrocytes for the subsequent study of OA. We have success differentiated iPS-OSH into chondrocytes. iPSC-derived chondrocytes were treated with cytokine interleukin-1α (IL-1α) to model the inflammatory environment of OA. It will become the platform to drug screening. We observed a novel pure compounds, 5895s, could decrease both the expression of inflammatory related genes, Ccl2, and the expression of catabolic related genes including Mmp9, Mmp13, and Adamts4. We will test 5895s anti-inflammation effect in vivo in the future. This study has established a iPSC-derived drug screening platform for OA and could be used to find out the mechanism of potential drugs and help reduce or prevent the occurrence of osteoarthritis.
中文摘要 I
英文摘要 III
目次 V
圖表目次 VI
縮寫表 VII
第一章 緒論 1
第二章 研究動機與方向 7
第三章 材料與方法 10
第四章 結果 21
第五章 結論 29
第六章 討論 30
第七章 圖表 34
第八章 參考文獻 57
1.Liu, S.P., et al., Mouse-induced pluripotent stem cells generated under hypoxic conditions in the absence of viral infection and oncogenic factors and used for ischemic stroke therapy. Stem Cells Dev, 2014. 23(4): p. 421-33.
2.Puculek, M., et al., The morphology and application of stem cells in digestive system surgery. Folia Morphol (Warsz), 2020.
3.Grochowski, C., E. Radzikowska, and R. Maciejewski, Neural stem cell therapy-Brief review. Clin Neurol Neurosurg, 2018. 173: p. 8-14.
4.Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
5.Nicola, N.A. and J.J. Babon, Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev, 2015. 26(5): p. 533-44.
6.Ponchio, L., et al., Mitomycin C as an alternative to irradiation to inhibit the feeder layer growth in long-term culture assays. Cytotherapy, 2000. 2(4): p. 281-6.
7.Kim, J.S., et al., Reprogrammed pluripotent stem cells from somatic cells. Int J Stem Cells, 2011. 4(1): p. 1-8.
8.Zhou, Y.Y. and F. Zeng, Integration-free methods for generating induced pluripotent stem cells. Genomics Proteomics Bioinformatics, 2013. 11(5): p. 284-7.
9.Anokye-Danso, F., et al., Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 2011. 8(4): p. 376-88.
10.Ma, X., L. Kong, and S. Zhu, Reprogramming cell fates by small molecules. Protein Cell, 2017. 8(5): p. 328-348.
11.Rim, Y.A., et al., Chondrogenic Differentiation from Induced Pluripotent Stem Cells Using Non-Viral Minicircle Vectors. Cells, 2020. 9(3).
12.Diekman, B.O., et al., Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix. Tissue Eng Part A, 2010. 16(2): p. 523-33.
13.Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7.
14.Schumann, D., et al., Mechanobiological conditioning of stem cells for cartilage tissue engineering. Biomed Mater Eng, 2006. 16(4 Suppl): p. S37-52.
15.Zuk, P.A., et al., Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 2001. 7(2): p. 211-28.
16.Murphy, C., et al., The Potency of Induced Pluripotent Stem Cells in Cartilage Regeneration and Osteoarthritis Treatment. Adv Exp Med Biol, 2018. 1079: p. 55-68.
17.Teramura, T., et al., Induction of mesenchymal progenitor cells with chondrogenic property from mouse-induced pluripotent stem cells. Cell Reprogram, 2010. 12(3): p. 249-61.
18.Guzzo, R.M., et al., Efficient differentiation of human iPSC-derived mesenchymal stem cells to chondroprogenitor cells. J Cell Biochem, 2013. 114(2): p. 480-90.
19.Guzzo, R.M. and H. Drissi, Differentiation of Human Induced Pluripotent Stem Cells to Chondrocytes. Methods Mol Biol, 2015. 1340: p. 79-95.
20.Stromps, J.-P., et al., Chondrogenic Differentiation of Human Adipose-Derived Stem Cells: A New Path in Articular Cartilage Defect Management? BioMed Research International, 2014. 2014: p. 740926.
21.Nejadnik, H., et al., Improved approach for chondrogenic differentiation of human induced pluripotent stem cells. Stem Cell Rev Rep, 2015. 11(2): p. 242-53.
22.Musumeci, G., et al., Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. Int J Mol Sci, 2015. 16(3): p. 6093-112.
23.Yeung, P., et al., Collagen microsphere based 3D culture system for human osteoarthritis chondrocytes (hOACs). Sci Rep, 2019. 9(1): p. 12453.
24.Shi, Y., et al., A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nat Commun, 2019. 10(1): p. 1914.
25.Madaleno, F.O., et al., Prevalence of knee osteoarthritis in former athletes: a systematic review with meta-analysis. Braz J Phys Ther, 2018. 22(6): p. 437-451.
26.Lee, J., et al., Sedentary behavior and physical function: objective evidence from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken), 2015. 67(3): p. 366-73.
27.Neogi, T. and Y. Zhang, Epidemiology of osteoarthritis. Rheum Dis Clin North Am, 2013. 39(1): p. 1-19.
28.Davis, M.A., et al., The association of knee injury and obesity with unilateral and bilateral osteoarthritis of the knee. Am J Epidemiol, 1989. 130(2): p. 278-88.
29.Berenbaum, F., Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage, 2013. 21(1): p. 16-21.
30.Gao, H., et al., Salidroside Alleviates Cartilage Degeneration Through NF-kappaB Pathway in Osteoarthritis Rats. Drug Des Devel Ther, 2020. 14: p. 1445-1454.
31.Greco, K.V., et al., High density micromass cultures of a human chondrocyte cell line: a reliable assay system to reveal the modulatory functions of pharmacological agents. Biochem Pharmacol, 2011. 82(12): p. 1919-29.
32.Kapoor, M., et al., Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol, 2011. 7(1): p. 33-42.
33.Matuska, A., et al., Autologous solution protects bovine cartilage explants from IL-1alpha- and TNFalpha-induced cartilage degradation. J Orthop Res, 2013. 31(12): p. 1929-35.
34.Willard, V.P., et al., Use of cartilage derived from murine induced pluripotent stem cells for osteoarthritis drug screening. Arthritis Rheumatol, 2014. 66(11): p. 3062-72.
35.Findlay, D.M. and G.J. Atkins, Osteoblast-chondrocyte interactions in osteoarthritis. Curr Osteoporos Rep, 2014. 12(1): p. 127-34.
36.Ben David, D., et al., Exposure to pro-inflammatory cytokines upregulates MMP-9 synthesis by mesenchymal stem cells-derived osteoprogenitors. Histochem Cell Biol, 2008. 129(5): p. 589-97.
37.Maldonado, M. and J. Nam, The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int, 2013. 2013: p. 284873.
38.Lee, H.J., et al., Membrane-Free Stem Cell Components Inhibit Interleukin-1alpha-Stimulated Inflammation and Cartilage Degradation in vitro and in vivo: A Rat Model of Osteoarthritis. Int J Mol Sci, 2019. 20(19).
39.Glyn-Jones, S., et al., Osteoarthritis. Lancet, 2015. 386(9991): p. 376-87.
40.Piñeiro-Ramil, M., et al., Cell Therapy and Tissue Engineering for Cartilage Repair. 2018: InTech.
41.Kim, C. and A. Keating, Cell Therapy for Knee Osteoarthritis: Mesenchymal Stromal Cells. Gerontology, 2019. 65(3): p. 294-298.
42.Ko, J.Y., et al., In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials, 2014. 35(11): p. 3571-81.
43.Suchorska, W.M., et al., Comparison of Four Protocols to Generate Chondrocyte-Like Cells from Human Induced Pluripotent Stem Cells (hiPSCs). Stem Cell Rev Rep, 2017. 13(2): p. 299-308.
44.Waese, E.Y. and W.L. Stanford, One-step generation of murine embryonic stem cell-derived mesoderm progenitors and chondrocytes in a serum-free monolayer differentiation system. Stem Cell Res, 2011. 6(1): p. 34-49.
45.Sakurai, H., et al., In vitro modeling of paraxial mesodermal progenitors derived from induced pluripotent stem cells. PLoS One, 2012. 7(10): p. e47078.
46.Zuliani, C.C., et al., Micromass cultures are effective for differentiation of human amniotic fluid stem cells into chondrocytes. Clinics (Sao Paulo), 2018. 73: p. e268.
47.Ito, A., et al., Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems. PLoS One, 2015. 10(5): p. e0128082.
48.Grigull, N.P., et al., Chondrogenic Potential of Pellet Culture Compared to High-Density Culture on a Bacterial Cellulose Hydrogel. Int J Mol Sci, 2020. 21(8).
49.Kuboth, S., J. Kramer, and J. Rohwedel, Chondrogenic differentiation in vitro of murine two-factor induced pluripotent stem cells is comparable to murine embryonic stem cells. Cells Tissues Organs, 2012. 196(6): p. 481-9.
50.Kuboth, S., J. Kramer, and J. Rohwedel, Chondrogenic differentiation in vitro of murine two-factor induced pluripotent stem cells is comparable to murine embryonic stem cells. Cells Tissues Organs, 2012. 196(6): p. 481-489.
51.Gong, G., et al., Direct and progressive differentiation of human embryonic stem cells into the chondrogenic lineage. Journal of cellular physiology, 2010. 224(3): p. 664-671.
52.Grigull, N.P., et al., Chondrogenic Potential of Pellet Culture Compared to High-Density Culture on a Bacterial Cellulose Hydrogel. International Journal of Molecular Sciences, 2020. 21(8): p. 2785.
53.Barlian, A., et al., Chondrogenic differentiation of adipose-derived mesenchymal stem cells induced by L-ascorbic acid and platelet rich plasma on silk fibroin scaffold. PeerJ, 2018. 6: p. e5809.
54.Huang, S.-J., et al., Adipose-Derived Stem Cells: Isolation, Characterization, and Differentiation Potential. Cell Transplantation, 2013. 22(4): p. 701-709.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊