|
1.Chambers, T.J., et al., Flavivirus genome organization, expression, and replication. Annu Rev Microbiol, 1990. 44: p. 649-88. 2.Frese, M., et al., Internal ribosome entry site-based attenuation of a flavivirus candidate vaccine and evaluation of the effect of beta interferon coexpression on vaccine properties. J Virol, 2014. 88(4): p. 2056-70. 3.Moore, C.A., et al., Characterizing the Pattern of Anomalies in Congenital Zika Syndrome for Pediatric Clinicians. JAMA Pediatr, 2017. 171(3): p. 288-295. 4.Holbrook, M.R., Historical Perspectives on Flavivirus Research. Viruses, 2017. 9(5). 5.Richard, A.S., et al., AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses. Proc Natl Acad Sci U S A, 2017. 114(8): p. 2024-2029. 6.Li, L., et al., PARP12 suppresses Zika virus infection through PARP-dependent degradation of NS1 and NS3 viral proteins. Sci Signal, 2018. 11(535). 7.Ding, Q., et al., Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease. Proc Natl Acad Sci U S A, 2018. 115(27): p. E6310-E6318. 8.Kim, J.A., et al., Insights into ZIKV-Mediated Innate Immune Responses in Human Dermal Fibroblasts and Epidermal Keratinocytes. J Invest Dermatol, 2019. 139(2): p. 391-399. 9.Shaily, S. and A. Upadhya, Zika virus: Molecular responses and tissue tropism in the mammalian host. Rev Med Virol, 2019. 29(4): p. e2050. 10.MacDonald, P.D.M. and E.W. Holden, Zika and Public Health: Understanding the Epidemiology and Information Environment. Pediatrics, 2018. 141(Suppl 2): p. S137-s145. 11.Wang, A., et al., Zika virus genome biology and molecular pathogenesis. Emerg Microbes Infect, 2017. 6(3): p. e13. 12.Fink, S.L., et al., The Antiviral Drug Arbidol Inhibits Zika Virus. Sci Rep, 2018. 8(1): p. 8989. 13.Sirohi, D. and R.J. Kuhn, Zika Virus Structure, Maturation, and Receptors. J Infect Dis, 2017. 216(suppl_10): p. S935-S944. 14.Saw, W.G., et al., Structural features of Zika virus non-structural proteins 3 and -5 and its individual domains in solution as well as insights into NS3 inhibition. Antiviral Res, 2017. 141: p. 73-90. 15.Sager, G., et al., Role of Host Cell Secretory Machinery in Zika Virus Life Cycle. Viruses, 2018. 10(10). 16.Vouga, M., et al., Clinical management of pregnant women exposed to Zika virus. The Lancet Infectious Diseases, 2016. 16(7). 17.Rodrigues, L.C., Microcephaly and Zika virus infection. The Lancet, 2016. 387(10033): p. 2070-2072. 18.Parra, B., et al., Guillain-Barre Syndrome Associated with Zika Virus Infection in Colombia. N Engl J Med, 2016. 375(16): p. 1513-1523. 19.Hastings, A.K., et al., Loss of the TAM Receptor Axl Ameliorates Severe Zika Virus Pathogenesis and Reduces Apoptosis in Microglia. iScience, 2019. 13: p. 339-350. 20.Faizan, M.I., et al., Zika Virus-Induced Microcephaly and Its Possible Molecular Mechanism. Intervirology, 2016. 59(3): p. 152-158. 21.Taniguchi, T., M. Palmieri, and C. Weissmann, A Qbeta DNA-containing hybrid plasmid giving rise to Qbeta phage formation in the bacterial host [proceedings]. Ann Microbiol (Paris), 1978. 129 b(4): p. 535-6. 22.Aubry, F., et al., Flavivirus reverse genetic systems, construction techniques and applications: a historical perspective. Antiviral Res, 2015. 114: p. 67-85. 23.Yamanaka, A., et al., Utility of Japanese encephalitis virus subgenomic replicon-based single-round infectious particles as antigens in neutralization tests for Zika virus and three other flaviviruses. J Virol Methods, 2017. 243: p. 164-171. 24.Zou, J. and P.Y. Shi, Strategies for Zika drug discovery. Curr Opin Virol, 2019. 35: p. 19-26. 25.Shiryaev, S.A., et al., Repurposing of the anti-malaria drug chloroquine for Zika Virus treatment and prophylaxis. Sci Rep, 2017. 7(1): p. 15771. 26.Li, C., et al., Chloroquine, a FDA-approved Drug, Prevents Zika Virus Infection and its Associated Congenital Microcephaly in Mice. EBioMedicine, 2017. 24: p. 189-194. 27.Sacramento, C.Q., et al., The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Sci Rep, 2017. 7: p. 40920. 28.Shan, C., et al., An Infectious cDNA Clone of Zika Virus to Study Viral Virulence, Mosquito Transmission, and Antiviral Inhibitors. Cell Host Microbe, 2016. 19(6): p. 891-900. 29.Wang, B., et al., Structure and function of Zika virus NS5 protein: perspectives for drug design. Cell Mol Life Sci, 2018. 75(10): p. 1723-1736. 30.de Silva, A.M., et al., Viral Entry and NS1 as Potential Antiviral Drug Targets. Adv Exp Med Biol, 2018. 1062: p. 107-113. 31.Fiore, C., et al., Antiviral effects of Glycyrrhiza species. Phytother Res, 2008. 22(2): p. 141-8. 32.Matsumoto, Y., et al., Antiviral activity of glycyrrhizin against hepatitis C virus in vitro. PLoS One, 2013. 8(7): p. e68992. 33.Sun, Z.G., et al., Research Progress of Glycyrrhizic Acid on Antiviral Activity. Mini Rev Med Chem, 2019. 19(10): p. 826-832. 34.Crance, J.M., et al., Interferon, ribavirin, 6-azauridine and glycyrrhizin: antiviral compounds active against pathogenic flaviviruses. Antiviral Research, 2003. 58(1): p. 73-79. 35.Wang, J., et al., Bioconversion of glycyrrhizinic acid in liquorice into 18-β-glycyrrhetinic acid by Aspergillus parasiticus Speare BGB. Applied Biochemistry and Microbiology, 2010. 46(4): p. 421-425. 36.Pu, J., et al., Antiviral activity of Carbenoxolone disodium against dengue virus infection. J Med Virol, 2017. 89(4): p. 571-581. 37.Miyake, K., et al., Efficacy of Stronger Neo-Minophagen C compared between two doses administered three times a week on patients with chronic viral hepatitis. J Gastroenterol Hepatol, 2002. 17(11): p. 1198-204. 38.Mori, K., et al., Effects of glycyrrhizin (SNMC: Stronger Neo-Minophagen C) in hemophilia patients with HIV-1 infection. Tohoku J Exp Med, 1990. 162(2): p. 183-93. 39.Cinatl, J., et al., Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 2003. 361(9374): p. 2045-6. 40.Baltina, L.A., et al., Glycyrrhizic acid derivatives as influenza A/H1N1 virus inhibitors. Bioorg Med Chem Lett, 2015. 25(8): p. 1742-1746. 41.Pompei, R., S. Laconi, and A. Ingianni, Antiviral properties of glycyrrhizic acid and its semisynthetic derivatives. Mini Rev Med Chem, 2009. 9(8): p. 996-1001. 42.Chen, Q., et al., Glycyrrhetic acid, but not glycyrrhizic acid, strengthened entecavir activity by promoting its subcellular distribution in the liver via efflux inhibition. Eur J Pharm Sci, 2017. 106: p. 313-327. 43.Wang, L.J., et al., Synthesis, biological evaluation and structure-activity relationships of glycyrrhetinic acid derivatives as novel anti-hepatitis B virus agents. Bioorg Med Chem Lett, 2012. 22(10): p. 3473-9. 44.Zigolo, M.A., et al., Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study. Bioorg Chem, 2018. 78: p. 210-219.
|