|
1.Shafi T, Meyer TW, Hostetter TH, Melamed ML, Parekh RS, Hwang S, et al. Free levels of selected organic solutes and cardiovascular morbidity and mortality in hemodialysis patients: Results from retained organic solutes and clinical outcomes (ROSCO) investigators. PLoS One 2015; 10(5): e0126048 2.U.S. Renal Data system, USRDS 2013 Annual Data Report: Atlas of chronic kidney disease and end stage renal disease in the United States, National Institute of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland. 2015; 4: 2. 3.Parfrey PS, Foley RN. The clinical epidemiology of cardiac disease in chronic renal failure. J Am Soc Nephrol 1999; 10: 1606-1615. 4.Foley RN, Murray AM, Li S, Herzog CA, McBean AM, Eggers PW, et al. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the united states medicare population, 1998-1999. J Am Soc Nephrol 2005; 16: 489-495. 5.Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int 2002; 62: 1524-1538. 6.Widlansky ME, Gokce N, Keaney JF, Vita JA. The clinical implications of endothelial dysfunction. J Am Coll Cardiol 2003; 42: 1149-1160. 7.Miyazawa T, Nakagawa K, Shimasaki S, Nagai R. Lipid glycation and protein glycation in diabetes and atherosclerosis. Amino Acids 2012; 42(4): 1163-1170. 8.Weiss MF, Erhard P, Kader-Attia FA, Wu YC, Deoreo PB, Araki A, et al. Mechanisms for the formation of glycoxidation products in end-stage renal disease. Kidney Int 2000; 57: 2571-2585. 9.Miyata T, Saito A, Kurokawa K, de Strihou CVY. Advanced glycation and lipoxidation end products: reactive carbonyl compounds-related uraemic toxicity. Nephrol Dial Transplant 2001; 16(suppl 4): 8-11. 10.Sakata N, Noma A, Yamamoto Y, Okamoto K, Meng J, Takebayashi S, et al. Modification of elastin by pentosidine is associated with the calcification of aortic media in patients with end-stage renal disease. Nephrol Dial Transplant 2003; 18: 1601-1609. 11.Brunet P, Gondouin B, Duval-Sabatier A, Dou L, Cerini C, Dignat-George F, et al. Does uremia cause vascular dysfunction? Kidney Blood Press Res 2011; 34: 284-290. 12.Soro-Paavonen A, Zhang WZ, Venardos K, Coughlan MT, Harris E, Tong DC, et al. Advanced glycation end-products induce vascular dysfunction via resistance to nitric oxide and suppression of endothelial nitric oxide synthase. J Hypertens 2010; 28: 780-788. 13.Raj DSC, Choudhury D, Welbourne TC, Levi M. Advanced glycation end products: A nephrologist’s perspective. Am J Kidney Dis 2000; 35(3): 365-80. 14.Wagner Z, Molnár M, Molnár GA, Tamaskó M, Laczy B, Wagner L et al. Serum carboxymethyllysine predicts mortality in hemodialysis patients. Am J Kidney Dis 2006; 47(2): 294-300. 15.Schwedler SB, Metzger T, Schinzel R, Wanner C. Advanced glycation end products and mortality in hemodialysis patients. Kidney Int 2002; 62: 301-310. 16.National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002;39:S1-S226. 17.Shechter M, Issachar A, Marai I, Koren-Morag N, Freinark D, Shahar Y, et al. Long-term association of brachial artery flow-mediated vasodilatation and cardiovascular events in middle-aged subjects with no apparent heart disease. Int J Cardiol 2009; 134: 52-58. 18.Raitakari OT, Celermajer DS. Flow-mediated dilatation. Br J Clin Pharmacol 2000; 50: 397-404. 19.Iwamoto Y, Maruhashi T, Fujii Y, Idei N, Fujimura N, Mikami S, et al. Intimal-media thickness of brachial artery, vascular function, and cardiovascular risk factors. Arterioscler Thromb Vasc Biol 2012; 32: 2295-2303. 20.Meerwaldt R, Graaff R, Oomen PHN, Links TP, Jager JJ, Alderson NL, et al. Simple non-invasive assessment of advanced glycation end product accumulation. Diabetologia 2004; 47: 1324-330. 21.de Vos LC, Noordzij MJ, Mulder DJ, Smit AJ, Lutgers HL, Dullaart RP, et al. Skin autofluorescence as a measure of advanced glycation end product deposition is elevated in peripheral artery disease. Arterioscler Thromb Vasc Biol 2013; 33(1): 131-138. 22.Teragawa H, Kato M, Kurokawa J, Yamagata T, Matsuura H, Chayama K. Usefulness of flow-mediated dilation of the brachial artery and/or the intimal-media thickness of the carotid artery in predicting coronary narrowing in patients suspected of having coronary artery disease. Am J Cardiol 2001; 15: 88(10): 1147-1151. 23.Monnier VM, Bautista O, Kenny D, Sell DR, Fogarty J, Dahms W, et al. skin collagen ancillary study group. Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes. Diabetes 1999; 48(4): 870-880. 24.Monnier VM, Sell DR, Genuth S. Glycation products as markers and predictors of the progression of diabetic complications. Ann N Y Acad Sci 2005; 1043: 567-581. 25.Tanaka K, Tani Y, Asai J, Nemoto F, Kusano Y, Suzuki H, et al. Skin autofluorescence is associated with severity of vascular complications in Japanese patients with type 2 diabetes. Diabet Med 2012; 29: 492-500. 26.Mulder DJ, van Haelst PL, Graaff R, Gans RO, Zijlstra F, Smit AJ. Skin autofluorescence is elevated in acute myocardial infarction and is associated with the one-year incidence of major adverse cardiac events. Neth Heart J 2009; 17(4): 162-168. 27.Mulder DJ, van Haelst PL, Gross S, de Leeuw K, Bijzet J, Graaff R, et al. Skin autofluorescence is elevated in patients with stable coronary artery disease and is associated with serum levels of neopterin and the soluble receptor for advanced glycation end products. Atherosclerosis 2008; 197(1): 217-223. 28.Noordzij MJ, Lefrandt JD, Loeffen EA, Saleem BR, Meerwaldt R, Lutgers HL et al. Skin autofluorescence is increased in patients with carotid artery stenosis and peripheral artery disease. Int J Cardiovasc Imaging 2012; 28(2): 431-438. 29.Ueno H, Koyama H, Tanaka S, Fukumoto S, Shinohara K, Shoji T, et al. Skin autofluorescence, marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease. Metabolism 2008; 57(10): 1452-1457. 30.Kocak H, Gumuslu S, Sahin E, Ceken K, Gocmen YA, Yakupoglu G, et al. Advanced oxidative protein products are independently associated with endothelial function in peritoneal dialysis patients. Nephrology 2009; 14: 273-280. 31.Sönmez Uydeş-Doğan B, Topal G, Takir S, Ilkay Alp F, Kaleli D, Ozdemir O. Relaxant effects of pravastatin, atorvastatin, and cerivastatin on isolated rat aortic rings. Life Sci 2005; 76(15): 1771-1786. 32.Deng HF, Xiong Y. Effect of pravastatin on impaired endothelium-dependent relaxation induced by lysophosphatidylcholine in rat aorta. Acta Pharmacol Sin 2005; 26(1): 92-98. 33.Nazratun N, Mahmood AA, Kuppusamy UR, Ahmad TS, Tan SY. Diabetes mellitus exacerbates advanced glycation end product accumulation in the veins of end-stage renal failure patients. Vasc Med 2006; 11: 245-250. 34.Zhou Y, Yu Z, Jia H, Sun F, Ma L, Guo R, et al. Association of serum pentosidine with arterial stiffness in hemodialysis patients. Artif Organs 2010; 34(3): 193-199. 35.Contreras I, Reiser KM, Martinez N, Giansante E, Lopez T, Suarez N, et al. Effects of aspirin or basic amino acids on collagen cross-links and complications in NIDDM. Diabetes Care 1997; 20(5): 832-835. 36.Jadoul M, Ueda Y, Yasuda Y, Saito A, Robert A, Ishida N, et al. Influence of hemodialysis membrane type on pentosidine plasma level, a marker of carbonyl stress. Kidney Int 1999; 55: 2487-2492. 37.Suliman ME, Heimbürger O, Bárány P, Anderstam B, Pecoits-Filho R, Rodríguez Ayala E, et al. Plasma pentosidine is associated with inflammation and malnutrition in end-stage renal disease patients starting on dialysis therapy. J Am Soc Nephrol 2003; 14(6): 1614-1622. 38.de Simone G, Verdecchia P, Pede S, Gorini M, Maggioni AP, on behalf of the MAVI Investigators. Prognosis of inappropriate left ventricular mass in hypertension. The MAVI study. Hypertension. 2002;40:470-6. 39.Huang BT, Peng Y, Liu W, Zhang C, Juang FY, Wang PJ, et al. Inappropriate left ventricular mass and poor outcomes in patients with angina pectoris and normal ejection fraction. Coron Artery Dis. 2015;26:163-9. 40.Cioffi G, Rossi A, Zoppini G, Targher G, de Simone G, Devereux RB, et al. Inappropriate left ventricular mass independently predicts cardiovascular mortality in patients with type 2 diabetes. Int J Cardiol. 2013;168(5):4953-6. 41.Muiesan ML, Salvetti M, Paini A, Monteduro C, Galbassini G, Bonzi B, et al. Inappropriate left ventricular mass changes during treatment adversely affects cardiovascular prognosis in hypertensive patients. Hypertension. 2007;49:1077-83. 42.Zieman SJ, Kass DA. Advanced glycation end product cross-linking: Pathophysiologic role and therapeutic target in cardiovascular disease. CHF. 2004;10:144-51. 43.Hartlog JWL, Voors AA, Bakker SJL, Smit AJ, van Veldhuisen DJ. Advanced glycation end-products (AGEs) and heart failure: Pathophysiology and clinical implications. Eur J Heart Fail. 2007;9:1146-55. 44.Schäfer S, Huber J, Wihler C, Rütten H, Busch AE, Linz W. Impaired left ventricular relaxation in type 2 diabetic rats is related to myocardial accumulation of Nε-(carboxymethyl)lysine. Eur J Heart Fail. 2006;8:2-6. 45.van Heerebeck L, Hamdani N, Handoko L, Falcao-Pires I, Musters RJ, Kupreishvili K, et al. Diastolic stiffness of the failing diabetic heart: Importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation. 2008;117:43-51. 46.Striker LJ, Striker GE. Administration of AGEs in vivo induces extracellular matrix gene expression. Nephrol Dial Transplant. 1996;11[suppl 5]:62-5. 47.Vélayoudom-Céphise FL, Rajaobelina K, Helmer C, Nov S, Pupier E, Blanco L, et al. Skin autofluorescence predicts cardio-renal outcome in type 1 diabetes: a longitudinal study. Cardiovasc Diabetol. 2016;15:127-34. 48.Jiang JP, Chen PY, Chen JH, Yu XQ, Xie D, Mei CL, et al. Accumulation of tissue advanced glycation end products correlated with glucose exposure dose and associated with cardiovascular morbidity in patients on peritoneal dialysis. Atherosclerosis. 2012;224:187-94. 49.Wang CC, Wang YC, Wang GJ, Shen MY, Chang YL, Liou SY, et al. Skin autofluorescence is associated with endothelial dysfunction in uremic subjects on hemodialysis. PLoS One. 2016;11(1):e0147771. 50.Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s guidelines and the chamber quantification writing group, developed in conjunction with the European association of echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440-63. 51.Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009;22(2):107-33. 52.Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57(6):450-8. 53.Su HM, Lin TH, Hsu PC, Lee CS, Lee WH, Chen SC, et al. Association of chronic kidney disease and peripheral artery disease with inappropriate left ventricular mass. PLoS One. 2012;7:10:e48422. 54.Cioffi G, Tarantini L, Frizzi R, Stefenelli C, Furlanello F, de Simone G. Chronic Kidney disease elicits excessive increase in left ventricular mass growth in patients at increased risk for cardiovascular events. J Hypertens. 2011;29:565-73. 55.Maunganidze F, Norton GR, Maseko MJ, Libhaber CD, Majane OHI, Sareli P, et al. Relationship between glomerular dysfunction and left ventricular mass independent of haemodynamic factors in a community sample. J Hypertens. 2013;31:568-75. 56.Ratto E, Leocini G, Viazzi F, Bezante GP, Falqui V, Parodi A, et al. Inappropriate left ventricular mass is associated with microalbuminuria independently of left ventricular hypertrophy in primary hypertension. J Hypertens. 2008;26:345-50. 57.Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: Oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62:1524-38. 58.Little WC, Zile MR, Kitzman DW, Hundley WG, O’Brien TX, Degroof RC. The Effect of alagebrium chloride (ALT-711), a novel glucose cross-link breaker, in the treatment of elderly patients with diastolic heart failure. J Card Fail. 2005;11:191-5. 59.de Simone G, Pasanisi F, Contaldo F. Link of nonhemodynamic factors to hemodynamic determinants of left ventricular hypertrophy. Hypertension. 2001;38:13-8. 60.Celentano A, Pietropaolo I, Palmieri V, Esposito NDP, Crivaro M, Cirillo F, et al. Inappropriate left ventricular mass and angiotensin converting enzyme gene polymorphism. J Hum Hypertensions. 2001;15:811-3. 61.Gregori M, Tocci G, Marra A, Pignatelli G, Santolamazza C, Befani A, et al. Inadequate RAAS suppression is associated with excessive left ventricular mass and systo-diastolic dysfunction. Clin Res Cardiol. 2013;102:725-33. 62.López B, Castellano JM, González A, Barba J, Díez J. Association of increased plasma cardiotrophin-1 with inappropriate left ventricular mass in essential hypertension. Hypertension. 2007;50:977-83. 63.Petrova R, Yamamoto Y, Muraki K, Yonekura H, Sakurai S, Watanabe T, et al. Advanced glycation endproduct-induced calcium handling impairment in mouse cardiac myocytes. J Mol Cell Cardiol. 2002;34:1425-31. 64.Hartog JWL, Willemsen S, van Veldhuisen DJ, Posma JL, van Wijk LM, Hummel YM, for the BENEFICIAL investigators. Effect of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure. Eur J Heart Fail. 2011;13:899-908. 65.Libhaber CD, Norton GR, Maseko MJ, Majane OHI, Millen AME, Maunganidze F, et al. Relationship between inappropriate left ventricular hypertrophy and ejection fraction independent of absolute or indexed mass in a community sample of black African ancestry. J Hypertens. 2013;31:169-76. 66.de Simone G, Kitzman DW, Palmieri V, Liu JE, Oberman A, Hopkins PN, et al. Association of inappropriate left ventricular mass with systolic and diastolic dysfunction. The HyperGEN Study. Am J Hypertens. 2004;17:828-33. 67.Mureddu GF, Cioffi G, Stefenelli C, Boccanelli. Relationships of the appropriateness of left ventricular mass to left atrial size and function in arterial hypertension. J Cardiovasc Med. 2007;8:445-52. 68.Mureddu GF, Pasanisi F, Palmieri V, Celentano A, Contaldo F, de Simone G. Appropriate or inappropriate left ventricular mass in the presence or absence of prognostically adverse left ventricular hypertrophy. J Hypertens. 2001;19:1113-9. 69.Hofmann B, Jacobs K, Navarrete Santos A, Wienke A, Silber RE, Simm A. Relationship between cardiac tissue glycation and skin autofluorescence in patients with coronary artery disease. Diabete Metab. 2015;41:410-5. 70.Soro-Paavonen A, Zhang WZ, Venardos K, Coughlan MT, Harris E, Tong DCK, et al. Advanced glycation end-products induce vascular dysfunction via resistance to nitric oxide and suppression of endothelial nitric oxide synthase. J Hypertens. 2010;28:780-8. 71.Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens. 2003;21:3-12. 72.Koetsier M, Lutgers HL, de Jonge C, Links TP, Smit AJ, Graaff R. Reference values of skin autofluorescence. Diabetes Technol Ther. 2010;12(5):399-403. 73.Kellow NJ, Coughlan MT, Reid CM. Association between habitual dietary and lifestyle behaviours and skin autofluorescence (SAF), a marker of tissue accumulation of advanced glycation end-products (AGEs), in healthy adults. Eur J Nutr. 2017; Jun 27. 74.van Watteringe RP, Mook-Kanamori MJ, Slagter SN, van der Klauw MM, van Villet-Ostaptchouk JV, Graaff R, et al. The association between various smoking behaviors, cotinine biomarkers and skin autofluorescence, a marker for advanced glycation end product accumulation. PLoS ONE. 2017;12(6):e0179330. 75.Syngle A, Vohra K, Garg N, Kaur L, Chand P. Advanced glycation end-products inhibition improves endothelial dysfunction in rheumatoid arthritis. Int J Rheum Dis. 2012;15(1):45-55. 76.Arsov S, Graaff R, van Oeveren W, Stegmayr B, Sikole A, Rakhorst G, et al. Advanced glycation end-products and skin autofluorescence in end-stage renal disease: a review. Clin Chem Lab Med. 2014;52(1):11-20. 77.Lutger HL, Graaff R, Links TP, Ubink-Veltmaat LJ, Bilo HJ, Gans RO, et al. Skin autofluorescence as a noninvasive marker of vascular damage in patients with type 2 diabetes. Diabetes Care. 2006;29(12):2654-9. 78.Fraser SD, Roderick PJ, Mclntyre NJ, Harris S, Mclntyre CW, Fluck RJ, et al. Skin autofluorescence and all-cause mortality om stage 3 CKD. Clin J Am Soc Nephrol. 2014;9:1361-8. 79.de Vos LC, Mulder DJ, Smit AJ, Dullaart RPF, Kleefstra N, Lijfering WM, et al. Skin autofluorescence is associated with 5-year mortality and cardiovascular events in patients with peripheral artery disease. Arterioscler Throm Vasc Biol. 2014;34:933-8. 80.Winston G, Palmas W, Lima J, Polak J, Bertoni A, Burke G, et al. Pulse pressure and subclinical cardiovascular disease in the Multi-Ethnic Study of Atherosclerosis. Am J Hypertens. 2013;26(5):636-42. 81.International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care. 2009;32:1327-1334. 82.Da Moura Semedo C, Webb M, Waller H, Khunti K, Davies M. Skin autofluorescence, a non-invasive marker of advanced glycation end products: clinical relevance and limitations. Postgrad Med J. 2017;93:289-94. 83.Coutinho T, Borlaug B, Pellikka P, Turner S, Kullo I. Sex differences in arterial stiffness and ventricular-arterial interactions. J Am Coll Cardiol. 2013;61:96-103. 84.Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with vulvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Thorac Cardiovasc Surg. 2014;148:e1-e132. 85.Palombo C, Kozakova M. Arterial stiffness, atherosclerosis, and cardiovascular risk: Pathophysiologic mechanisms and emerging clinical indications. Vasc Pharmacol. 2016;77:38-47. 86.Viazzi F, Leoncini G, Parodi D, Ravera M, Ratto E, Vettoretti S, et al. Pulse pressure and subclinical cardiovascular damage in primary hypertension. Nephrol Dial Transplant. 2002;17:1779-1785. 87.Cauwenberghs N, Knez J, Tikhonoff V, D’hooge J, Kloch-Badelek M, Thijs L, et al. Doppler indexes of left ventricular systolic and diastolic function in relation to the arterial stiffness in a general population. J Hypertens. 2016;34:762-771. 88.Chirinos J, Kips J, Jacobs Jr. D, Brumback L, Duprez D, Kronmal R, et al. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J Am Coll Cardiol. 2012;60:2170-2177. 89.Pandey A, Khan H, Newman A, Lakatta E, Forman D, Butler J, et al. Arterial stiffness and risk of overall heart failure, heart failure with preserved ejection fraction, and heart failure with reduced ejection fraction: The Heart ABC Study (Health, Aging, and Body Composition). Hypertens. 2017;69:267-274. 90.Mitchell G, Hwang S, Vasan R, Larson M, Pencina M, Hamburg N, et al. Arterial stiffness and cardiovascular events: The Framingham Heart Study. Circ. 2010;121:505-511. 91.Sutton-Tyrrell K, Najjar S, Boudreau R, Venkitachalam L, Kupelian V, Simonsick E, et al. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circ. 2005;111:3384-3390. 92.Satoh-Asahara N, Kotani K, Yamakage H, Yamada T, Araki R, Okajima T, et al. Cardio-ankle vascular index predicts for the incidence of cardiovascular events in obese patients: A multicenter prospective cohort study (Japan Obesity and Metabolic Syndrome Study: JOMS). Atherosclerosis. 2015;242:461-468. 93.Pritchett A, Mahoney D, Jacobsen S, Rodeheffer R, Karon B, Redfield M. Diastolic dysfunction and left atrial volume: A population-based study. J Am Coll Cardiol. 2005;45:87-92. 94.Christensen N, Dahl J, Carter-Storch R, Bakkestr??m R, Pecini R, Steffensen F, et al. Relation of left atrial size, cardiac morphology, and clinical outcome in asymptomatic aortic stenosis. Am J Cardiol 2017;120:1877-1883. 95.Mosquera V, Bouzas-Mosquera A, González-Barbeito M, Bautista-Hernandez V, Muñiz J. Alvarez-García N, et al. Indexed left atrial size predicts all-cause and cardiovascular mortality in patients undergoing aortic valve surgery. J Thorac Cardiovasc Surg. 2017;153:1275-1284. 96.Thomas L, Abhayaratna W. Left atrial reverse remodeling: Mechanism, Evaluation, and clinical significance. J Am Coll Cardiol Img. 2017;10:65-77. 97.Kadappu K, Boyd A, Eshoo S, Haluska B, Yeo A, Marwick T, et al. Changes in left atrial volume in diabetes mellitus: more than diastolic dysfunction? Eur Heart J Cardiovasc Imaging. 2012;13:1016-1023. 98.Cerami C, Founds H, Nicholl I, Mitsuhashi T, Giordano D, Vanpatten S, et al. Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci U S A. 1997;94(25):13915-13920. 99.Foley RN, Murray AM, Li S, Herzog CA, Marshall McBean A, et al. Chronic kidney disease and the risk of cardiovascular disease, renal replacement, and death in the United States medicare population, 1998-1999. J Am Soc Nephrol. 2005;16:489-495. 100.Taki K, Takayama F, Tsuruta Y, Niwa T. Oxidative stress, advanced glycation end products, and coronary artery calcification in hemodialysis patients. Kidney Int. 2006;70:218-224. 101.Hartog JWL, Voors AA, Bakker SJL, Smit AJ, van Veldhuisen DJ. Advanced glycation end-products (AGEs) and heart failure: Pathophysiology and clinical implications. Eur J Heart Fail. 2007;9:1146-1155. 102.Miyata T, Wada Y, Cai Z, Iida Y, Horie K, Yasuda Y, et al. Implication of am increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney Int. 1997;51:1170-1181. 103.Huang QF, Sheng CS, Liu M, Li FH, Li Y, Wang JG. Arterial stiffness and wave reflections in relation to plasma advanced glycation end products in a Chinese population. Am J Hypertens. 2013;26(6):754-761. 104.Schram MT, Schalkwijk CG, Bootsma AH, Fuller JH, Chaturvedi N, Stehouwer CDA, et al. Advanced glycation end products are associated with pulse pressure in type 1 diabetes. The EURODIAB prospective complications study. Hypertension. 2005;46:232-237. 105.Forbes JM, Yee TL, Thallas V, Lassila M, Candido R, Jandeleit-Dahm KA, et al. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes. 2004;53:1813-1823. 106.Thai HM, Do BQ, Tran TD, Gaballa MA, Goldman S. Aldosterone antagonism impoves endothelial-dependent vasorelaxation in heart failure via upregulation of endothelial nitric oxide synthase production. J Card Fail. 2006;12(3):240-245. 107.Quach K, Lvtvyn L, Baigent C, Bueti J, Garg AX, Hawley C, et al. The safety and efficacy of mineralocorticoid receptor antagonists in patients who require dialysis: A systemic review and meta-analysis. Am J Kidney Dis. 2016. 108.Lin C, Zhang Q, Zhang H, Lin A. Long-term effects of low-dose spironolactone on chronic dialysis patients: A randomized placebo-controlled study. J Clin Hypertens. 2016;18(2):121-128. 109.Toba H, Nakashima K, Oshima Y, Kojima Y, Tojo C, Nakano A, Wang J, Kobara M, Nakata T. Erytheropoietin prevents vascular inflammation and oxidative stress in subtotal nephrectomized rat aorta beyond harmatopoiesis. Clin Exp Pharmacol. Physiol. 2010;37:1139-1146. 110.Vettoretti S, Ochodnicky P, Buikema H, Henning RH, Alex Kluppel C, de Zeeuw D, van Dokkum RPE. Altered myogenic constriction and endothelium-derived hyperpolarizing factor-mediated relaxation in small mesenteric arteries of hypertensive subtotally nephrectomized rats. J Hypertens. 2006;24:2215-2223. 111.Chuah YK, Basir R, Talib H, Tie TH, Nordin N. Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int J Inflam. 2013;2013:403460. 112.Ott C, Jacobs K, Haucke E, Santos AN, Grune T, Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014;2:411-429. 113.Schäfer N, Lohmann C, Winnik S, van Tits LJ, Miranda MX, Vergopoulos A, Ruschitzka F, Nussberger J, Berger S, Lüscher TF, Verrey F, Matter CM. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity. Eur Heart J. 2013;34:3515-3524. 114.Adel H, Taye A, Khalifa M. Spironolactone improves endothelial dysfunction in Streptozocin-induced diabetic rats. Naunyn-Schmiedeberg’s Arch Pharmacol. 2014;387:1187-1197. 115.Zhou LL, Cao W, Xie C, Tian J, Zhou Z, Zhou Q, Zhu P, Li A, Liu Y, Miyata T, Hou FF, Nie J. The receptor of adcnaced glycation end products play a central role in advanced oxidation products-induced podocyte apoptosis. Kidney Int. 2012;82:759-770. 116.Forbes JM, Thallas V, Thomas MC, Founds HW, Burns WC, Jerums G, Cooper ME. The breakdown of pre-existing advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J. 2003;17(12):1762-1764. 117.Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460(7255):587-591. 118.Rezaei M, Keshtzar E, Khodayer MJ, Javadipour M. SirT3 regulates diabetogenic effects caused by arsenic: An implication for mitochondrial complex II modification. Toxicol Lett. 2019;301:24-33. 119.Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, et al. Mammalian Sir2 Homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 2007;27(24):8807-8814. 120.Chen Y, Zhang J, Lin Y, Lei Q, Guan KL, Zhao S, Xiong Y. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO rep. 2011;12:534-541. 121.Tseng AH, Shieh SS, Wang DL. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med. 2013;63:222-234. 122.Ren X, Ren L, Wei Q, Shao H, Chen L, Liu N. Advanced glycation end-peoducts decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Cardiovasc Diabetol. 2017;16:52. 123.Zinkevich NS, Gutterman DD. ROS induced ROS release in vascular biology: redox-redox signaling. Am J Physiol Heart Circ Physiol. 2011;301:H647-H653. 124.Montezano AC, Touyz RM. Reactive oxygen species ans endothelial function - role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol. 2012;110(1):87-94. 125.Violi F, Sanguigni V, Carnevale R, Plebani A, Rossi P, Finocchi A, et al. Hereditary deficiency of gp91(phox) is associated with enhanced arterial dilatation: results of a multicenter study. Circulation. 2009;120:1616-1622. 126.Taye A, Morawietz H. Spironolactone inhibits NADPH oxidase-induced oxidative stress and enhances eNOS in human endothelial cells. Iran J Pharm Res. 2011;10(2):329-337. 127.Sánchez-Pozos K, Barrera-Chimal J, Garzón-Muvdi J, Pérez-Villalva R, Rodríguez-Romo R, Cruz C, et al. Recovery from ischemic acute kidney injury by spironolactone administration. Nephrol Dial Transplant. 2012;27:3160-3169. 128.Han SY, Kim CH, Kim HS, Jee YH, Song HK, Lee MH, et al. Spironolactone prevents diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. J Am Sec Nephrol. 2006;17:1362-1372.
|