跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 09:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄧召易
研究生(外文):Chao-Yi Teng
論文名稱:台灣不同鄉鎮大氣超細微粒之數量濃度粒徑分布特徵
論文名稱(外文):Number size distribution of ambient ultrafine particles in different local communities of Taiwan
指導教授:楊禮豪
指導教授(外文):Li-Hao Young
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:職業安全與衛生學系碩士在職專班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:62
中文關鍵詞:超細微粒空間分布時間變異性相關性
外文關鍵詞:ultrafine particlesspatial distributiontemporal variabilitycorrelation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
粒徑小於100 (nm)的大氣超細微粒(ultrafine particles, UFPs),對於健康及環境各個方面都具有重要的影響,例如氣候變遷與對人類不良健康影響等。本研究目的係透過既有研究數據的彙整與分析,探討UFPs的數量濃度空間分布與時間變異之特徵,及其與空氣污染物和氣象因子之相關性。本研究彙整2011年4月8日至2012年8月13日期間,於台灣四個空品區中之14個鄉鎮,使用掃描式電移動度分徑儀和凝結核計數器系統(SMPS/CPC),經短期密集監測所得之UFPs數量濃度粒徑分布數據。該系統測量之微粒粒徑範圍為10-1000 nm。研究結果顯示,在不同空品區的實測總微粒數量平均濃度範圍從2.7×103 cm-3至32.1×103 cm-3,最高濃度在萬華都會站,而最低濃度在恆春鄉村站。UFPs數量濃度逐時變化與上下班時的車流量高峰時段相吻合,故與CO和NOX的正相關,顯示地方交通排放源為重要影響因素。此外,中午時段有時還會有新微粒產生,表示光化學作用的影響。總體而言,超細微粒的數量濃度粒徑分布存在很大的時間變異性,取決於當地空氣污染源及氣象因子。
Ambient ultrafine particles (UFPs) are those with diameters less than 100 nm, and have important implications in varying aspects of public and environment health, such as climate forcing and adverse human health effects. Building upon data collected in earlier studies, the primary objective of this study was to characterize the spatial distribution and temporal variability of the number-size distributions of UFPs, and their correlations with air pollutants and meteorological factors. Using a sequential mobility particle spectrometer and condensation particle counter (SMPS/CPC), the data include short-term intensive field campaigns at 14 local communities of Taiwan from April 8, 2011 to August 13, 2012. The measured particle size was in the range of 10-1000 nm. The measured average number concentrations among the communities ranged from 2.7×103 to 32.1×103 cm-3, with the highest concentration observed at the urban site, whereas the lowest at the rural site. Elevated UFP number concentrations often coincided with the morning and evening rush-hour periods and thus positively correlated with CO and NOx. This suggests that local traffic emissions are the major source of UFPs. In addition, new particle formation events were occasionally observed during midday hours, indicating a photochemical-driven source. Overall, a strong spatiotemporal variability was observed for the number-size distributions of UFPs, depending on the sources and meteorological factors specific to each local communities.
致謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1-1研究緣起 1
1-2研究目的 1
第二章 文獻探討 2
2-1超細微粒的來源與形成 2
2-2超細微粒數量濃度影響 3
2-3超細微粒數量與空氣污染源及氣象因子之相關性 4
第三章 研究方法 6
3-1研究設計 6
3-2採樣地點與時間 7
3-3採樣設備與方法 8
3-4 資料收集與統計分析 9
第四章 結果與討論 15
4.1研究期間空品與氣象條件 15
4.1.1春季研究期間空品與氣象條件 15
4.1.2夏季研究期間空品與氣象條件 15
4.2數量濃度空間特性 16
4.2.1春季不同鄉鎮之差異 16
4.2.2夏季不同鄉鎮之差異 17
4.3時間變異 19
4.3.1春季不同鄉鎮之逐時變異 19
4.3.2夏季不同鄉鎮之逐時變異 20
4.3.3相同鄉鎮春夏季之逐時變異 20
4.4微粒數量濃度粒徑分布 22
4.5微粒數量濃度與空氣污染物及氣象因子之相關性 24
第五章 結論與建議 58
5.1結論 58
5.2研究限制 59
5.3研究建議 59
參考文獻 60
Charron, A and Harrison, RM. 2003. Primary particle formation from
vehicle emissions during exhaust dilution in the roadside atmosphere. Atmospheric Environment., 37, 4109–4119.
Jeong, C.H., Hopke, P., Chalupa, D., Markutell, 2004. Characteristics of
nucleation and growth events of ultrafine particles measured in
Rochester, NY. Environmental Science and Technology 38, 1933-1940.
Donaldson, K, Tran, L, Albert Jimenez, LA, Duffin, R, Newby, DE,
Mills, N, MacNee, W and Stone, V. 2005. Combustion-derived
nanoparticles: a review of their toxicology following inhalation exposure. Particle & Fibre Toxicology., 5/6, 553-560.
Nel, A., Xia, T., Madler, L., Li, N., 2006. Toxic potential of materials at the nanolevel. Science 311, 622-627
Gavett, S.H., Madison, S.L., Dreher, K.L., Winsett, D.W., McGee, J.K., Costa, D,L., 1997. Metal and sulfate composition of residual oil fly ash determines airway hyperreacitivity and lung injury in rats. Environmental Research 72, 162-72.
Pekkanen, J., Timonen, K.L., Ruuskanen, J., Reponen, A., Mirme, A., 1997. Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environmental Research 74, 24-33.


Chuang, K.J., C, C.C., Su, T.C., Lee, C.T., Tang, C.S., 2007. The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. American Journal of Respiratory and Critical Care Medicine 176, 370-376.
Biswas P., Wu C.Y. 2005. Nanoparticles and the environment. Joumal of the Air & Waste Management Association 55, 708-46.
Wehner, B., Wiedensohler, A., 2003. Long-term measurement of
submicrometer urban aerosols: statistical analysis for correlations
with meteorological conditions and trace gases. Atmospheric
Chemistry and Physics 3, 867-879.
Shi, J.P., Evans, D.E., Karrison, A.A., Harrison, R.M., 2001. Sources and
concentration of nanoparticles (<10 nm diameter) in the urban
atmosphere. Atmospheric Environment35, 1193-1202.
Chang, S.C., Lee, C.T., 2007. Secondary aerosol formation through
photochemical reactions estimated by using air quality monitoring
data in Taipei City from 1994-2003. Atmospheric Environment
41, 4002-4017.
Harrison, R.M., Deacon, A.R., Jones, M.R., Appleby, R.S. 1997.
Sources and processes affecting concentrations of PM10 and PM2.5 particulate matter in Birmingham (U.K.) Atmospheric Environment
31, 4103-4117.
Watson, J.G., Chow, J.C. , Park, K., Lowenthal, D.H., 2006. Nanoparticle
and ultrafine particle events at the Fresno Supersite. Air and Waste
Management Association 56, 417-430.
Winklmayr, W., Reischl, G.P., Lindner, A.O., Berner, A., 1990. A new
electro mobility spectrometer for the measurement of aerosol size
distributions in the size range from 1 to 1000 nm. Journal of Aerosol
Science 22, 289-296.
Reischl, G.P., Mäkelä, J.M., Necid, J., 1997. Performance of the Vienna
type differential mobility analyzer at 1.2 – 20 nm. Aerosol Science and Technology 27, 651-672.
王顗婷, 台灣中部空品區秋冬期間之大氣超細微粒數量濃度粒
徑分布及排放源研究, 中國醫藥大學職業安全與衛生學系碩士論文, 2009. 1-139.
賴威帆, 應用氣流軌跡與大氣微粒成份解析粒狀物污染事件日
特徵, 國立成功大學環境工程學系碩士論文, 2009.
林佳薇,台灣南部地區細懸浮微粒之特徵, 國立成功大學環境工程學系碩士論文, 2015.
陳珮瑄, 超細微粒有效密度即時量測系統之建置與應用, 中國醫藥大學職業安全與衛生學系碩士論文, 2014.
蔡俊鴻, 超細氣懸微粒水溶性無機離子成份特性變異與前驅物
及氣象因子關聯性研究,行政院國家科學委員會補助專題研究計畫成果報告, 2008.
李國瑞, 台灣北部三個空品測站大氣超細微粒的特性,國立交通大學環境工程系所學位論文, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top