跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/10 10:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉詩穎
研究生(外文):Shih-Ying Yeh
論文名稱:使用TOPAS模擬與分析方法評估質子治療設施的中子屏蔽劑量
論文名稱(外文):Neutron shielding calculations in a proton therapy facility based on TOPAS simulation and analytical model
指導教授:陳悅生
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:生物醫學影像暨放射科學學系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:120
中文關鍵詞:TOPAS質子治療屏蔽計算蒙地卡羅模擬
外文關鍵詞:TOPASproton therapyneutron shieldingMonte Carlo simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
質子治療是現階段放射治療很重要的議題,因應精準腫瘤治療的發展趨勢,近年來許多醫院正積極規劃設置質子與重粒子治療設備,其所衍生之高能射束的輻射安全顧慮更值得我們正視,而最主要的屏蔽目標即為具有高度的穿透性及相對生物效應的二次中子,因此我們將針對質子治療設施的輻防屏蔽規劃,進行評估方法的研究與建立。
本研究的主要目的為探討TOolkit for a PArticle Simulation(TOPAS)蒙地卡羅工具和分析方法,用以評估典型質子治療設施屏蔽系統的可行性。我們使用TOPAS蒙地卡羅工具,配合典型的建築設計與治療設備資料,建立各項質子設施的組件進行模擬。同時,考慮各部件的質子射束損失數據,並調整射束源的特性,以能量為250 MeV的質子射束模擬,評估迴旋加速器、射束傳輸系統、旋轉基座系統以及機頭組件的射束損失,所造成典型質子屏蔽周圍32個感興趣點的中子等價劑量(neutron equivalent dose)分佈。此外,為確認蒙地卡羅模擬值的準確性,也使用傳統分析方法(analytical method)的計算值作為比較。
結果顯示,使用TOPAS模擬的結果與分析方法的數值具有一致性,並在分析方法受限於計算誤差及幾何複雜性時,TOPAS仍可進行複雜的幾何模擬。此外,我們也將TOPAS模擬的年中子等價劑量與NCRP的建議標準進行比較,其結果均是在合理的範圍內,並在建築規劃時可以酌量增厚部分區域的屏蔽,因此我們認為針對複雜的幾何屏蔽,使用TOPAS模擬可做為初步的輻射安全評估,並在未來實際建造質子設施時,可以作為屏蔽設計的參考,以建立符合安全防範的屏蔽系統,有效的作為保障操作人員以及病人安全的依據。
Proton radiation therapy with the physical advantages of the Bragg peak could be an efficient way to increase the radiation therapy therapeutic ratio, and is increasing in world popularity. The main radiation dictating the shielding requirements for a proton therapy facility is the neutron contamination, which is highly penetrating with high RBE values. The shielding should be assessed in advance due to the neutron shielding design complexity before the building is constructed.
Two calculation methods, the analytical method and the Monte Carlo simulation were used for neutron shielding assessment in this study. A proton therapy system has 250 MeV cyclotron accelerator, energy selection system, beam transport devices, a rotation gantry and spot scanning nozzle as its major components. The preliminary shielding designed by the architect was evaluated using analytical model calculation and TOPAS simulations. The neutron equivalent doses of 32 points of interest around the facility were set and calculated. Points not available for the analytical method were excluded.
The calculated values between the two methods were roughly consistent and all of the POIs have annual neutron equivalent dose lower than the NCRP recommended criterion. According to the calculations in this study, the shielding thicknesses for the treatment room ceiling and the shielding between the treatment rooms were slightly insufficient and require increasing. The methods used here can be useful tools for neutron shielding assessment for any new and existing proton facility.
目錄 iv
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 質子治療介紹 1
1-1-1. 癌症 1
1-1-2. 放射治療 3
1-1-3. 質子放射治療 10
1-2 質子治療系統 17
1-3 質子與物質的作用 19
1-3-1. 質子的物理作用 19
1-3-2. 質子治療射束作用的二次粒子 24
1-3-3. 中子的相互作用 26
1-4 輻射防護 28
1-4-1. 輻射防護的評估標準 28
1-4-2. 周圍等效劑量(Ambient dose equivalent,H* (d)) 31
1-4-3. 質子治療設備的屏蔽評估 36
1-4-4. 蒙地卡羅方法 36
(A) 蒙地卡羅原理 36
(B) TOPAS系統介紹 38
1-4-5. 分析方法(Analytical Methods) 43
(A) 分析方法介紹 43
(B) 分析方法的參數數據 45
1-5 研究目標 49
第二章 研究方法 50
2-1 TOPAS的幾何結構建立 50
2-1-1. 迴旋加速器幾何結構 50
2-1-2. 射束傳輸系統幾何結構 53
2-1-3. 旋轉基座系統幾何結構 55
2-1-4. 治療機頭幾何結構 57
2-1-5. 質子治療設施屏蔽結構 61
2-2 TOPAS的參數設定 66
2-2-1. 射源參數設定 66
2-2-2. 物理列表設定 69
2-2-3. 評估點設定 71
2-3 分析方法設定 73
2-3-1. 衰減參數設定 73
2-3-2. 距離參數設定 76
第三章 結果與討論 82
3-1 TOPAS的射源數據評估 82
3-1-1. 射束特性驗證 82
3-1-2. 側向剖面劑量分布(Profile) 85
3-2 TOPAS的模擬結果 88
3-2-1. 迴旋加速器室 88
3-2-2. 射束傳輸系統 89
3-2-3. 旋轉基座系統 90
3-2-4. 治療室 91
3-3 比較TOPAS與分析方法 94
3-3-1. 迴旋加速器 94
3-3-2. 射束傳輸系統 97
3-3-3. 旋轉基座系統 100
3-3-4. 治療機頭 102
3-3-5. 整體質子治療系統 107
第四章 結論 114
第五章 未來工作 116
第六章 參考文獻 117
1. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. (2007). In Ann ICRP (2007/12/18 ed., Vol. 37, pp. 1-332).
2. Agency., I. A. E. (1994). International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources.(Interim Ed): International Atomic Energy Agency.
3. Agosteo, S., Magistris, M., Mereghetti, A., Silari, M., & Zajacova, Z. (2007). Shielding data for 100–250MeV proton accelerators: Double differential neutron distributions and attenuation in concrete. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 265(2), 581-598. doi:10.1016/j.nimb.2007.09.046
4. Agosteo, S., Mereghetti, A., Sagia, E., & Silari, M. (2014). Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 319, 154-167. doi:10.1016/j.nimb.2013.10.015
5. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., . . . Zschiesche, D. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/S0168-9002(03)01368-8
6. Arico, G., Gehrke, T., Gallas, R., Mairani, A., Jaekel, O., & Martisikova, M. (2018). Investigation of single carbon ion fragmentation in water and PMMA for hadron therapy. Phys Med Biol.
7. Battistoni, G. C., F.; Fassò, A.; Ferrari, A.; Muraro, S.; Ranft, J.; Roesler, S.; Sala, P. R. (2007). The FLUKA code: description and benchmarking. AIP Conference Proceeding, 896, 31-49. doi:10.1063/1.2720455
8. Bednarz, B., Lu, H.-M., Engelsman, M., & Paganetti, H. (2011). Uncertainties and correction methods when modeling passive scattering proton therapy treatment heads with Monte Carlo. Physics in Medicine & Biology, 56(9), 2837.
9. Bushberg, J. T. (2002). The essential physics of medical imaging: Lippincott Williams & Wilkins.
10. Busold, S., Partowidjojo, A., & Schippers, J. (2017). Recent Ion Source Developments for VARIAN''s ProBeam® Cyclotron. Paper presented at the 21st Int. Conf. on Cyclotrons and Their Applications (Cyclotrons'' 16), Zurich, Switzerland, September 11-16, 2016.
11. CERN. (2018). The changing landscape of cancer therapy.
12. Clasie, B., Wroe, A., Kooy, H., Depauw, N., Flanz, J., Paganetti, H., & Rosenfeld, A. (2010). Assessment of out‐of‐field absorbed dose and equivalent dose in proton fields. Med Phys, 37(1), 311-321.
13. De Laney, T. F., & Kooy, H. M. (2008). Proton and charged particle radiotherapy: Lippincott Williams & Wilkins.
14. Durante, M., Orecchia, R., & Loeffler, J. S. (2017). Charged-particle therapy in cancer: clinical uses and future perspectives. Nature Reviews Clinical Oncology, 14(8), 483.
15. E. Moritz, L. (2001). Radiation protection at low energy proton accelerators. Radiation Protection Dosimetry, 96(4), 297-309.
16. Ebner, D. K., & Kamada, T. (2016). The emerging role of carbon-ion radiotherapy. Frontiers in oncology, 6, 140.
17. Eckerman, K., Harrison, J., Menzel, H., & Clement, C. (2012). ICRP publication 119: compendium of dose coefficients based on ICRP publication 60. Ann ICRP, 41, 1-130.
18. Fassó, A., Ferrari, A., Sala, P., & Ranft, J. (2001). FLUKA: Status and prospects for hadronic applications. In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications (pp. 955-960): Springer.
19. Fasso, A., Ferrari, A., Ranft, J., & Sala, P. R. (2005). FLUKA: a multi-particle transport code. Retrieved from
20. Filges, D., & Goldenbaum, F. (2009). Handbook of spallation research: theory, experiments and applications: Wiley.
21. Gunma University Heavy Ion Medical Center, G. U. Relative dose depth curve of particle therapy. Retrieved from https://heavy-ion.showa.gunma-u.ac.jp/en/therapy02.html
22. Haberer. (1993). Intensity-Controlled Rasterscan Technique. NIM A.
23. Hagemman, A. (2006). Radiation Protection in the Design of Radiotherapy Facilities. In: IAEA Safety Report Series.
24. Hartmann, G. H. (2006). Radiation Monitoring Instruments.
25. Hendricks, J. S., McKinney, G. W., Waters, L. S., Roberts, T. L., Egdorf, H. W., Finch, J. P., . . . Swinhoe, M. T. (2005). MCNPX extensions version 2.5. 0. Los Alamos National Laboratory.
26. Huang, S., Kang, M., Souris, K., Ainsley, C., Solberg, T. D., McDonough, J. E., . . . Lin, L. (2018). Validation and clinical implementation of an accurate Monte Carlo code for pencil beam scanning proton therapy. J Appl Clin Med Phys, 19(5), 558-572. doi:10.1002/acm2.12420
27. Ipe, N., Fehrenbacher, G., Gudowska, I., Paganetti, H., Schippers, J., & Roesler, S. (2010). PTCOG Publications Sub-Committee Task Group on Shielding Design and Radiation Safety of Charged Particle Therapy Facilities. PTCOG Report, 1.
28. Karger, C. P., & Peschke, P. (2017). RBE and related modeling in carbon-ion therapy. Physics in Medicine & Biology, 63(1), 01TR02.
29. Kimstrand, P., Tilly, N., Ahnesjö, A., & Traneus, E. (2008). Experimental test of Monte Carlo proton transport at grazing incidence in GEANT4, FLUKA and MCNPX. Physics in Medicine & Biology, 53(4), 1115.
30. Knopf, A., Parodi, K., Paganetti, H., Cascio, E., Bonab, A., & Bortfeld, T. (2008). Quantitative assessment of the physical potential of proton beam range verification with PET/CT. Physics in Medicine & Biology, 53(15), 4137.
31. Lai, B. L., Sheu, R. J., & Lin, U. T. (2015). Shielding Analysis of Proton Therapy Accelerators: A Demonstration Using Monte Carlo-Generated Source Terms and Attenuation Lengths. Health physics, 108(2), S84-S93.
32. Langner, U. W., Eley, J. G., Dong, L., & Langen, K. (2017). Comparison of multi‐institutional Varian ProBeam pencil beam scanning proton beam commissioning data. J Appl Clin Med Phys, 18(3), 96-107.
33. Laulainen, N., & Bichsel, H. (1972). Energy removed by delta rays from finite volumes in passage of charged particles. Nuclear Instruments and Methods, 104(3), 531-539.
34. Lechner, A. (2018). Particle interactions with matter. CERN Yellow Rep. School Proc., 5, 47. doi:10.23730/CYRSP-2018-005.47
35. Levin, W. P., Kooy, H., Loeffler, J. S., & DeLaney, T. F. (2005). Proton beam therapy. Br J Cancer, 93(8), 849-854. doi:10.1038/sj.bjc.6602754
36. Liu, K., Stevenson, G. R., Thomas, R. H., & Thomas, S. V. (1983). Variance and regression analyses of Moyer model parameter data and their variation with primary proton energy.
37. Martin, B., & Shaw, G. (2008). Particle Physics : Third Edition.
38. Marx, V. (2014). Sharp shooters. Nature, 508, 133. Retrieved from 10.1038/508133a. doi:10.1038/508133a
39. Minguet, J., Smith, K. H., & Bramlage, P. (2016). Targeted therapies for treatment of non‐small cell lung cancer—Recent advances and future perspectives. International journal of cancer, 138(11), 2549-2561.
40. Newhauser, W. D., Titt, U., Dexheimer, D., Yan, X., & Nill, S. (2002). Neutron shielding verification measurements and simulations for a 235-MeV proton therapy center. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476(1), 80-84. doi:10.1016/S0168-9002(01)01400-0
41. Paganetti, H., Jiang, H., Lee, S. Y., & Kooy, H. (2004). Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility. Med Phys, 31(7), 2107-2118.
42. Pelliccioni, M. (2000). Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code. Radiation Protection Dosimetry, 88(4), 279-297.
43. Perl, J., Shin, J., Schümann, J., Faddegon, B., & Paganetti, H. (2012). TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys, 39(11), 6818-6837.
44. Petrovich, C. (2002). Evaluation of spallation products in Pb/Bi cooling systems of ADS-DF.
45. Podgoršak, E. B. (2006). Radiation physics for medical physicists: Springer.
46. Pray, L. (2008). DNA replication and causes of mutation. Nature education, 1(1), 214.
47. Prusator, M. T., Ahmad, S., & Chen, Y. (2018). Shielding verification and neutron dose evaluation of the Mevion S250 proton therapy unit. J Appl Clin Med Phys, 19(2), 305-310. doi:10.1002/acm2.12256
48. Robert, C., Dedes, G., Battistoni, G., Böhlen, T., Buvat, I., Cerutti, F., . . . Kurz, C. (2013). Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes. Physics in Medicine & Biology, 58(9), 2879.
49. Sarrut, D., Bardiès, M., Boussion, N., Freud, N., Jan, S., Létang, J. M., . . . Mauxion, T. (2014). A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med Phys, 41(6Part1).
50. Sayah, R. (2012). Evaluations des doses dues aux neutrons secondaires reçues par des patients de différents âges traités par protonthérapie pour des tumeurs intracrâniennes.
51. Schillo, M. (2014). Global industrial development of accelerators for charged particle therapy.
52. Shin, J., Perl, J., Schümann, J., Paganetti, H., & Faddegon, B. (2012). A modular method to handle multiple time-dependent quantities in Monte Carlo simulations. Physics in Medicine & Biology, 57(11), 3295.
53. Shu, H., Yin, C., Zhang, H., Liu, M., Zhang, M., Zhao, L., . . . Moyers, M. F. (2019). Scanned Proton Beam Performance and Calibration of the Shanghai Advanced Proton Therapy Facility. MethodsX, 6, 1933-1943. doi:10.1016/j.mex.2019.08.001
54. Tavakoli, M. B., Mohammadi, M. M., Reiazi, R., & Jabbari, K. (2015). Evaluation on Geant4 hadronic models for pion minus, pion plus and neutron particles as major antiproton annihilation products. Journal of medical signals and sensors, 5(2), 105.
55. Testa, M., Min, C. H., Verburg, J. M., Schümann, J., Lu, H.-M., & Paganetti, H. (2014). Range verification of passively scattered proton beams based on prompt gamma time patterns. Physics in Medicine & Biology, 59(15), 4181.
56. Units, I. C. o. R. (1970). Linear energy transfer (Vol. 16): International Commission on Radiation.
57. Van Goethem, M., Van der Meer, R., Reist, H., & Schippers, J. (2009). Geant4 simulations of proton beam transport through a carbon or beryllium degrader and following a beam line. Physics in Medicine & Biology, 54(19), 5831.
58. Varian ProBeam Brochure. (2016). Retrieved from https://pdf.medicalexpo.com/pdf/varian-oncology/probeam-brochure/70440-134603.html
59. Verburg, J. M., Grassberger, C., Dowdell, S., Schuemann, J., Seco, J., & Paganetti, H. (2016). Automated Monte Carlo simulation of proton therapy treatment plans. Technology in cancer research & treatment, 15(6), NP35-NP46.
60. Wilson, R. R. (1946). Radiological use of fast protons. Radiology, 47(5), 487-491.
61. Zagryazhskaya, A., Gyuraszova, K., & Zhivotovsky, B. (2015). Cell death in cancer therapy of lung adenocarcinoma. International Journal of Developmental Biology, 59(1-2-3), 119-129.
62. Ziegler, J. (1999). Stopping of energetic light ions in elemental matter. Journal of applied physics, 85(3), 1249-1272.
63. 行政院衛生福利部統計處. (2018). 107 年死因統計結果分析. Retrieved from https://dep.mohw.gov.tw/DOS/lp-3352-113.html.
電子全文 電子全文(網際網路公開日期:20250110)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊