(3.220.231.235) 您好!臺灣時間:2021/03/08 05:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王宣喻
研究生(外文):WANG,HSUEN-YU
論文名稱:研究益生元與乳酸桿菌對產碳青黴烯酶腸內菌的協同抑制效果
論文名稱(外文):To Investigate the Synergistic Inhibitory Effect of Prebiotics and Lactobacillus on Carbapenemase-Producing Enterobacteriaceae
指導教授:黃惠玲黃惠玲引用關係
指導教授(外文):HUANG,HUI-LING
口試委員:湯宏仁呂英震
口試委員(外文):TANG,HUNG-JENLU,YING-CHEN
口試日期:2020-07-14
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:保健營養系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:104
中文關鍵詞:碳青黴烯類抗藥性腸桿菌產碳青黴烯酶腸內菌乳酸桿菌益生元
外文關鍵詞:carbapenem-resistant Enterobacteriaceae (CRE)carbapenemase-producing Enterobacteriaceae (CPE)Lactobacillusprebiotic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
從1920年代末Alexander Fleming發現青黴素(penicillin)開始,抗生素徹底改變了醫學領域,隨後開始20多年抗生素的發展,但在1990年開始出現從未發生過的感染症,抗生素的開發卻跟不上感染症的變化,後線的碳青黴烯類(carbapenem)也產生抗藥性,稱為碳青黴烯類抗藥性腸桿菌(carbapenem-resistant Enterobacteriaceae, CRE)。部分菌株可藉由基因表現產生碳青黴烯酶(carbapenemase)分解carbapenem,稱為產碳青黴烯酶腸內菌(carbapenemase-producing Enterobacteriaceae, CPE)。其中最常見且研究較多的抗藥性基因為blaKPC(Klebsiella pneumoniae carbapenemase, KPC)及blaNDM-1(New Delhi metallo-β-lactamase 1, NDM-1),帶著抗藥性基因的菌株逐漸增加,導致治療更加困難。
CRE感染的死亡率可高達五成,更令人擔憂的是腸桿菌科菌株之間可以藉由質體或是線毛互相傳遞KPC及NDM這類抗藥基因,使得CRE的存在問題更顯嚴重。乳酸桿菌(Lactobacillus spp.)能產生乳酸及醋酸等有機酸、過氧化氫、抗菌胜肽等物質,進而抑制腸道內病原菌的生長,減少細菌感染發生。
而根據實驗室先前的研究證實在體外實驗中乳酸桿菌以產生乳酸及醋酸等有機酸降低酸鹼值為主要的抑菌機轉。在本研究中我們將測試不同的益生元(prebiotics)對乳酸桿菌產酸抑菌能力的影響。結果顯示,不同的益生元對不同株乳酸桿菌產酸能力都不同。後續將進行體外抑菌能力的試驗,以篩選出抑菌能力效果較佳的乳酸桿菌及搭配的益生元,以利後續經由進入動物活體實驗研究益生元協同乳酸桿菌對腸道內KPC菌株抑制的效果。

Since the discovery of penicillin by Alexander Fleming in the late 1920s, antibiotics have completely changed the field of medicine. However, antibiotic resistance among bacteria always rapidly develop after the development of novel antibiotic. There is no exception for carbapenem – a broad-spectrum antibiotic, which is commonly used in severe infectious disease. Among carbapenem-resistant Enterobacteriaceae (CRE), some strains which can produce carbapenemase are known as carbapenemase-producing Enterobacteriaceae (CPE). blaKPC (Klebsiella pneumoniae carbapenemase, KPC) and blaNDM-1 (New Delhi metallo-β-lactamase 1, NDM-1) are the most common carbapenem-related antibiotic resistant mechanism and their increases make treatment more complicated than before. The mortality rate of CRE infection can be as high as 50%. What is more worrying is that the Enterobacteriaceae strains can transfer drug resistance genes such as KPC and NDM to each other through plasmids or sex pili.
Lactobacillus spp. can produce organic acids such as lactic acid and acetic acid, hydrogen peroxide, antibacterial peptides and other substances, thereby it can help inhibit the growth of intestinal pathogenic bacteria and reduce the development of bacterial infections.
According to previous in vitro research, it has been confirmed that Lactobacillus produces organic acids such as lactic acid and acetic acid to reduce the pH value, which is the main anti-bacterial mechanism. In this study, we will test the effect of different probiotics on the acid production and bacteriostatic ability of Lactobacillus. Initially, this study determined that different probiotics have different acid production capacities for different strains of Lactobacillus. The antibacterial ability test was to detect the Lactobacillus with best antibacterial ability and prebiotics, so as to facilitate the subsequent study about the inhibitory effect of probiotics and Lactobacillus on KPC strains in the intestine through animal experiments.

中文摘要 I
Abstract III
謝 誌 Ⅴ
目 錄 VII
附表目錄 X
附圖目錄 XI
表 目 錄 XII
圖 目 錄 XIII
縮寫對照表 XIV
第一章 緒論 1
第一節 前言 1
第二節 文獻回顧 3
一、 腸桿菌科(Enterobacteriaceae) 3
二、 抗生素抗藥性(Antibiotics resistance) 5
三、 碳青黴烯類抗藥性腸桿菌(Carbapenem-resistant Enterobacteriaceae, CRE) 7
四、 產碳青黴烯酶腸內菌(Carbapenemase-producing Enterobacteriaceae, CPE) 9
五、 台灣盛行狀況 12
六、 益生菌(Probiotic) 13
七、 益生元(Prebiotic) 14
八、 合生元(Synbiotic) 23
九、 乳酸桿菌(Lactobacillus) 25
第二章 材料與方法 37
第一節 實驗材料及儀器 37
一、 實驗使用之菌株 37
二、 培養基 37
三、 實驗使用之藥品 39
四、 實驗儀器 39
第二節 實驗假說與設計 41
第三節 實驗方法 47
一、 菌株培養 47
二、 體外抑菌實驗 47
第三章 結果與討論 52
第一節 微量肉湯稀釋法(Broth microdilution assay)-乳酸桿菌 52
第二節 益生元-乳酸桿菌產酸能力與生長狀況(Growth test) 53
第三節 微量肉湯稀釋法(Broth microdilution assay)-益生元-乳酸桿菌 54
第四節 時間殺菌曲線試驗(Time killing test) 55
第五章 結論 60
參考文獻 62


林梅芳(2015)。Carbapenem抗生素對於腸道菌之抗藥性。藥學雜誌,31(1),2-5。
黃美瑩、黃詩涵、林金榮(2015)。以微生物生產果寡糖及其保健功能。水試專訓,20,40-42。
楊麗嬋、林文川(2007)。菊醣之旅。科學發展,418,14-19。
廖啟成(2000)。乳酸菌專輯。新竹:財團法人食品工業發展研究所。
盧柏樑(2015)。新的超級細菌在台灣 –具碳青黴烯抗藥性之腸桿菌科細菌。內科學誌,26,328-335。
疾病管制局(2019)。2019年台灣院內感染監視資訊系統監視季報(第3季)。
衛生福利部食品藥物管理署(FDA)-食品添加物使用範圍及限量暨規格標準。類別:(八) 營養添加劑-乳酮糖。
加拿大衛生部(2012)。Novel Food Information - Isomalto-oligosaccharide (VitaFiber ™)
Aachary A. A., Prapulla S. G. (2011). Xylooligosaccharides (XOS) as an EmergingPrebiotic: Microbial Synthesis,Utilization,Structural Characterization, BioactiveProperties, and Applications. Compr Rev Food Sci Food Saf , 10, 1-16.
Azad A. K., Sarker M., Li T., Yin J. (2018). Probiotic Species in the Modulation of Gut Microbiota: An Overview. Biomed Res Int, 2, 1-8.
Ahmad M.S., Krishnan S., Ramakrishna B. S., Mathan M. A., Pulimood B., Murthy S. N. (2000). Butyrate and glucose metabolism by colonocytes in experimental colitis in mice. Gut, 46(4), 493–499.
Andersson H., Asp N. G., Bruce A., Roos S., Wadstrom T., Wold A. E., (2001). Health effects of probiotics and prebiotics: A literature review on human studies. Scand J Nutr, 45, 58-75.
Arena M. P., Silvain A., Normanno G., Grieco F., Drider D., Spano G. et al. (2016). Use of Lactobacillus plantarum Strains as a Bio-Control Strategy against Food-Borne Pathogenic Microorganisms. Front Microbiol, 7, 464, 1-10.
Belorkar S. A., Gupta A. K. (2016). Oligosaccharides: a boon from nature’s desk. AMB Express, 6(1), 82.
Bindels L. B., Delzenne N. M., Cani P. D., Walter J. (2015). Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol, 12(5), 303–310.
Bin P., Liu S., Chen S., Zeng Z., Huang R., Yin Y. et al.(2017). The effect of aspartate supplementation on the microbial composition and innate immunity on mice. Amino Acids, 49(12) , 2045–2051.
Bomba A., Nemcova R., Mudronova D., Guba P. (2002).The possibilities of potentiating the efficacy of probiotics.Trends Food Sci. Technol, 13, 121–126.
Bouhnik Y., Attar A., Joly F. A., Riottot M., Dyard F., Flourié B. (2004).Lactulose ingestion increases faecal bifidobacterial counts: a randomised double-blind study in healthy humans. Eur J Clin Nutr, 58(3), 462–466.
Bruno-Barcena J. M., Azcarate-Peril M. A. (2015). Galacto-oligosaccharides and colorectal cancer: Feeding our intestinal probiome. J Funct Foods, 12, 92–108.
Chen C. C., Lai C. C., Huang H. L., Huang W. Y., Toh H. S., Toh H. S. et al. (2019). Antimicrobial Activity of Lactobacillus Species Against Carbapenem-Resistant Enterobacteriaceae. Front. Microbiol, 10, 789.
Chen C. C., Lai C. C., Huang H. L., Su Y. T., Chiu Y. H., Toh H. S. et al. (2020). Antimicrobial ability and mechanism analysis of Lactobacillus species against carbapenemase-producing Enterobacteriaceae. J Microbiol Immunol Infect. https://doi.org/10.1016/j.jmii.2020.01.005
Chung Y., Hsu C., Ko C. (2007). Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH Value in the elderly. Nutr Res, 27, 756–761.
Dagher S. F., Azcarate-Peril M. A., Bruno-Barcena J. M. (2013). Heterologous expression of a bioactive β-hexosyltransferase, an enzyme producer of prebiotics, from Sporobolomyces singularis. Appl. Environ. Microbiol, 79, 1241–1249.
Deng Y., Li M., Mei L., Cong L. M. , Liu Y. , Zhang B. B. et al. (2018). Manipulation of intestinal dysbiosis by a bacterial mixture ameliorates loperamide-inducedconstipation in rats. Beneficial Microbes, 9(3), 453–464.
Dhiren P., Ramandeep S., Hardik P. (2017). Lactulose: a prebiotic, laxative and detoxifying agent. Drugs Ther Perspect, 33, 228–233.
Doi Y., Paterson D. L. (2015). Carbapenemase-Producing Enterobacteriaceae. Semin Respir Crit Care Med, 36(1), 74–84.
Dorothy L. A., Kelly M. C., Steven D. T. (2017). Infant Food Applications of Complex Carbohydrates: Structure, Synthesis, and Function. Carbohydr Res, 437, 16–27.
Duar R. M., Lin X. B., Zheng J., Martino M. E., Grenier T., Pérez-Muñoz M. E. et al. (2017). Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev, 41(Supp_1), 27-48.
El-Gamal M. I., Brahim I., Hisham N., Aladdin R., Mohammed H., Bahaaeldin A. (2017). Recent updates of carbapenem antibiotics. Eur J Med Chem, 131, 185-195.
Feng Q., Liang S., Jia H. Stadlmayr A. , Tang L., Lan Z. et al.(2015). Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun, 11(6), 6528.
Fishbein L., Kaplan M., Gough M. (1988). Fructo-oligosaccharides: a review.Vet Hum Toxicol, 30, 104-107.
Food and Agriculture Organization (FAO). (2002 ).Guidelines for the Evaluation of Probiotics in Food; Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food; FAO: London, ON, Canada.
Fuller R. (1989). Probiotics in man and animals. J Appl Bacteriol, 66(5), 35-78.
Georgieva R., Yocheva L., Tserovska L., Zhelezova G., Stefanova N., Atanasova A. et al. (2015). Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures. Biotechnol. Equip, 29, 84–91.
Gibson G. R., Probert H. M., Loo J. V., Rastall R. A., Roberfroid M. B. (2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev, 17(2), 259-275.
Gibson G. R., Roberfroid M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr, 125(6), 1401-1412.
Giraffa G. (2012). Selection and design of lactic acid bacteria probiotic cultures.Eng. Life Sci, 12, 391–398.
Goffin D., Delzenne N., Blecker C., Hanon E., Deroanne C., Paquot M. (2011). Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics.Critical Crit Rev Food Sci Nutr, 51, 394–409.
Goldenberg J. Z., Yap C., Lytvyn L., Lo C. K., Beardsley J., Mertz D. et al. (2017). Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev, 12, CD006095.
Guarner F., Schaafsma G. J. (1998). Probiotics. Int J Food Microbiol. 17,39(3), 237-238.
Guideline.(2006). Evaluation and Treatment of Constipation in Infants and Children: Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroen-terol Nutr, 43(3) , 1–13.
Hammes W. P., Vogel R. F. (1995) .The genus Lactobacillus. In: Wood B.J.B, Holzapfel WH (eds) .The genera of lactic acid bacteria, 19–54.
Hardy H., Harris J., Lyon E., Beal J., Foey A. D. (2013). Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients, 5(6), 1869-912.
Health Canada. (2012). Novel Food Information – Isomalto-oligosaccharide (VitaFiber™). Food & Nutrition [serial on the Internet], https://www.canada.ca/en/health-canada/services/food-nutrition/genetically-modified-foods-other-novel-foods/approved-products/isomalto-oligosaccharide-vitafiber-trade.html
Hegarty J. W., Guinane C. M., Ross R. P., Hill C., Cotter P. D. (2016). Bacteriocin production: a relatively unharnessed probiotic trait? F1000Res, 5 (F1000 Faculty Rev), 2587, 1-9.
Hsueh P. R., Badal R. E., Hawser S. P., Hoban D. J., Bouchillon S. K., Ni Y. et al.(2010). Epidemiology and antimicrobial susceptibility profiles of aerobic and facultative gram-negative bacilli isolated from patients with intra-abdominal infections in the Asia-Pacific region: 2008 results from SMART (Study for Monitoring Antimicrobial Resistance Trends). Int. J. Antimicrob, 36, 408–414.
Inglin R. C., Stevens M. J., Meile L., Lacroix,C., Meile L. (2015). Highthroughput screening assays for antibacterial and antifungal activities of Lactobacillus species. J. Microbiol, 114, 26–29.
Ita P. S., Hutkins R. W. (1991). Intracellular pH and Survival of Listeria monocytogenes Scott A in Tryptic Soy Broth Containing Acetic, Lactic, Citric, and Hydrochloric Acids. J Food Pro, 54(1), 15-19.
Jacouton E., Chain F., Sokol H., Langella P., Bermúdez-Humarán, L. G. (2017). Probiotic Strain Lactobacillus casei BL23 Prevents Colitis-Associated Colorectal Cancer. Front Immunol, 8, 1553,1-10.
James M., Theodore J. (2016). Sugars, obesity, and cardiovascular disease: results from recent randomized control trials. Eur J Nutr, 55(Suppl 2), 45–53.
Janssen A. W., Kersten S. (2015). The role of the gut microbiota in metabolic health. FASEB J, 29(8), 3111–3123.
Jean S. S., Lee W. S., Lam C., Hsu C. W., Chen R. J., Hsueh P. R. (2015). Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options. Future Microbiol, 10(3), 407-425.
Jenkins C., Rentenaar R. J., Landraud L., Brisse S. (2017). Enterobacteriaceae, Infectious Diseases (4th ed.,pp. 1565-78). UK: Elsevier.
Jesús R. B., Belén G. G., Isabel M., Alvaro P. (2018). Treatment of infections caused by extended-spectrum-beta lactamase-, ampC-, and carbapenemase-producing Enterobacteriaceae. Clin. Microbiol Rev, 31(2), 1-42.
Johann D. D. P., Patrice N., Laurent P. (2015). Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance. Antimicrob Agents Chemother, 59(10), 5873–5884.
Joossens M., Huys G., Cnockaert M. Preter V. D., Verbeke K., Rutgeerts P. et al. (2011). Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut, 60(5), 631–637.
Kalliomäki M., Salminen S., Arvilommi H., Kero P., Koskinen P., Isolauri E. (2001). Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet, 357(9262), 1076-1079.
Kalliomäki M., Salminen S., Poussa T., Isolauri E. (2007). Probiotics during the first 7 years of life: a cumulative risk reduction of eczema in a randomized, placebo-controlled trial. J. Allergy Clin. Immunol, 119(4), 1019-1021.
Karimi S., Rashidian E., Birjandi M., Mahmoodnia L. (2018). Antagonistic effect of isolated probiotic bacteria from natural sources against intestinal Escherichia coli pathotypes. Electron Physician, 10(3), 6534-6539.
Katapodis P., Chistakopoulos P. (2008). Enzymatic production of feruloylxylo-oligosaccharides from corn cobs by a family 10 xylanase from Thermoascusaurantiacus. LWT Food Sci Technol, 41, 1239–1243.
Khosroshahi H. T., Habibzadeh A. , Khoshbaten M., Rahbari B., Chaichi P., Badiee A. H. (2014). Lactulose for reduction of nitrogen products in patients with chronic kidney disease. Iran J Kidney Dis, 8(5), 377–381.
Kono T. (1993).Fructooligosaccharides. In: Nakakuki I, ed. Oligosaccharides:production, properties, and applications. Sydney, Austraha:Gordon and Brech Sciences Publishers, 3, 50-78.
Kristalose [package insert]. Nashville: Cumberland Pharmaceu-ticals Inc; (2012).
Lactulose: drug information—UpToDate. [cited 2016 Nov 30].https://www.uptodate.com/contents/lactulose-drug information?source=see_link.
Lecerf J. M., Depeint F., Clerc E. (2012).Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br J Nutr, 108(10),1847–1858.
Lilly D. M., Stillwell R. H. (1965). “Probiotics: growth-promoting factors produced bymicroorganisms.” Science, 147(3659), 747-785.
Li Y., Liu M., Liu H., Wei X., Su X., Li M., Yuan J. (2020). Oral Supplements of Combined Bacillus licheniformis Zhengchangsheng® and Xylooligosaccharides Improve High-Fat Diet-Induced Obesity and Modulate the Gut Microbiota in Rats. Biomed Res Int, 2020, 1-17.
Loo V. J., Cummings J. H., Delzenne N., Englyst H., Franck A., Hopkins M. et al. (1999). Functional Food Properties of Non-Digestible Oligosaccharides: A Consensus Report From the ENDO Project (DGXII AIRII-CT94-1095). Br J Nutr, 81(2), 121–32.
Ma X., Wang G., Li D., Hao Y. (2016). Microcin V Production in Lactobacillus plantarum LB-B1 Using Heterologous Leader Peptide from Pediocin PA-1. Curr Microbiol, 72(3), 357-362.
Madhukumar M. S., Muralikrishna G. (2010). Structural characterization and determination of prebiotic activity of purifed xylooligosaccharides obtained from Bengal gram husk (Cicer arietinum L.) and wheat bran (Triticum aestivum). Food Chem, 118(2), 215–222.
Mandell, Douglas, Bennett. (2015). Principles and Practice of Infectious Diseases. 8th Edition.
Martens E., Demain A. L. (2017). The antibiotic resistance crisis, with a focus on the United States. J Antibiot (Tokyo), 70(5), 520-526.
Matsumoto K., Ichimura M., Tsuneyama K., Moritoki Y., Tsunashima H., Omagari K.(2017). Fructo-oligosaccharides and intestinal barrier function in a methionine–choline-deficient mouse model of nonalcoholic steatohepatitis. PLoS ONE, 12(6), e0175406.
McCarthy J., O’Mahony L., O’Callaghan L. Sheil B., Vaughan E. E., Fitzsimons N. et al. (2003).Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance. Gut, 52(7), 975–980.
Mills J. P., Rao K., Young V. B. (2018). Probiotics for prevention of Clostridium difficile infection. Curr Opin Gastroenterol, 34(1), 3-10.
Moritoki Y., Tsunashima H., Omagari K., Moritoki Y., Tsunashima H., Omagari K. et al. (2017). Fructo-oligosaccharides and intestinal barrier function in a methionine±choline-deficientmouse model of nonalcoholic steatohepatitis. PLoS ONE, 12(6), 1-14.
Moure A., Gullon P., Dominguez H., Parajo J. C. (2006). Advances in the manufacture, purifcation and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem, 41(9),1913–1923.
Murray P. R., Rosenthal K. S., Pfaller M. A. (2008). Medical Microbiology(6th). U.S.: Mosby.
Nowak A., Sli ´ zewska K. , Libudzisz Z. (2010). Probiotyki—Historia i mechanizmy działania. Zywno´s´c Nauka Technologia Jako´s´c, 4, 5–19.
O'Callaghan A., Sinderen D. V. (2016). Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front Microbiol, 7(925).
Oku T., Nakamura A. S. (2002). Digestion, absorption, fermentation, and metabolism of functional sugar substitutes and their available energy. Pure and Applied Chemistry, 74(7), 1253–1261.
Oliveira R., Florence A. et al.(2011). Use of lactulose as prebiotic and its influence on the growth, acidification profile and viable counts of different probiotics in fermented skim milk. Int J Food Microbiol, 145(1), 22-27.
Özel B., Şimşek Ö., Akçelik M., Saris P. E. J. (2018). Innovative approaches to nisin production. Appl Microbiol Biotechnol, 102(15), 6299-6307.
Paulina M., Katarzyna S. z. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 9(9), 1021.
Picard C., Fioramonti J., Francois A., Robinson T., Neant F., Matuchansky C. (2005). Review article: bifidobacteria as probiotic agents -- physiological effects and clinical benefits. Aliment Pharmacol Ther, 22(6), 495-512.
Rattanachaikunsopon P., Phumkhachorn P. (2010). Lactic acid bacteria:their antimicrobial compounds and their uses in food production. Ann Biol Res, 1, 218-228.
Rea M. C., Clayton E., O'Connor P. M., Shanahan F., Kiely B., Ross R. P. et al.(2007). Antimicrobial activity of lacticin 3,147 against clinical Clostridium difficile strains. J Med Microbiol, 56(7), 940-946.
Remely M., Dworzak S., Hippe B., Zwielehner J., Aumüller E., Brath H. et al.(2013). Abundance and diversity of microbiota in type 2 diabetes and obesity.J. Diab. Metab, 4(253).
Remo F., Mu¨beccel A., Liam O’M. (2010). Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence. Curr Opin Gastroenterol, 31(2), 153-158.
Ricardo P. D. S. O., Ana C.R. F., Patrizia P., Maricê N. D. O., Attilio C. (2011). Int J Food Microbiol, 145(1), 22-27
Robert F. P., Alaric W., Gautam D. (2016). The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resist Updat, 29, 30–46.
Rossolini G. M., Arena F., Pecile P., Pollini S. (2014). Update on the antibiotic resistance crisis.Curr Opin Pharmacol, 18, 56-60.
Rotar M. A., Semeniuc C., Apostu S., Suharoschi R., Mure C., Modoran C. et al. (2007). Researches concerning microbiological evolution of lactic acid bacteria to yoghurt storage during shelf-life. J. Agroalimentary Proc. Technol, 13, 135–138.
Salvetti E., Torriani S., Felis G. E. (2012). The Genus Lactobacillus: A Taxonomic Update. Probiotics Antimicrob Proteins, 4(4), 217-226.
Sheu W. H., Lee I. T., Chen W., Chan Y. C. (2008). Effects of xylooligosaccharides in type 2 diabetes mellitus. J. Nutr. Sci. Vitaminol, (Tokyo)54, 396-401.
Slavin J. (2013). Fiber and prebiotics: mechanisms and health benefits. Nutrients, 5(4), 1417–1435.
Tang H. J., Hsieh C. F., Chang P. C., Chen J. J., Lin Y. H., Lai C. C. et al. (2016). Clinical significance of community- and healthcare-acquired carbapenem-resistant Enterobacteriaceae isolates. PLoS One, 11(3), e0151897.
Tayebi Khosroshahi H., Habibzadeh A., Khoshbaten M. et al. (2014). Lactulose for reduction of nitrogen products in patients with chronic kidney disease. Iran J Kidney Dis, 8(5), 377–381.
Tungland B. C., Meyer D. (2002). Nondigestible oligo- and polysaccharides (dietary fiber): Their physiology and role in human health and food. Compr Rev Food Sci Food Saf, 1(3), 90–109.
Vanderhoof J. A., Young R. J. (1998). Use of probiotics in childhood gastrointestinal disorders. J. Pediatr. Gastroenterol. Nutr. 27, 323–332.
Vélez M. P., De Keersmaecker S. C., Vanderleyden J. (2007). Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol Lett, 276(2), 140-148.
Vergin F. (1954). “Anti-und Probiotica”. Hipokrates, 25, 116–119.
Wilson K. H., Perini F. (1988). Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora. Infect Immun, 56, 2610-2614.
Xiao C. L., Tao Z. H., Guo L., Li W. W., Wan J. L., Sunet H. C. et al. (2011). Isomalto oligosaccharide sulfate inhibits tumor growth and metastasis of hepatocellular carcinoma in nude mice. BMC Cancer, 11(150), 1-11.
Yadav H., Jain S., Sinha P. R. (2008). Oral administration of dahi containing probiotic Lactobacillus acidophilus and Lactobacillus casei delayed the progression of streptozotocin-induced diabetes in rats. J Dairy Res, 75(2), 189–195.
Yen C. H., Tseng Y. H., Kuo Y. W., Lee M. C., Chen H. L. (2010). Long-term supplementation of isomalto-oligosaccharides improved colonic microflora profile, bowel function, and blood cholesterol levels in constipated elderly people–a placebo controlled, diet-controlled trial. Nutr, 27(4), 445–450.
Yvonne S., Mary X. D. (2013). Regulation of Bacterial Pathogenesis by Intestinal Short-Chain Fatty Acids. Adv Appl Microbiol, 85, 93–118.
Zokaee F., Kaghazchi T., Zare A., Soleimani M. (2002). Isomerization of lactose to lactulose—study and comparison of three catalytic systems. Process Biochem, 37, 629–635.

電子全文 電子全文(網際網路公開日期:20250714)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔