(54.236.58.220) 您好!臺灣時間:2021/03/01 18:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林柏安
研究生(外文):LIN, BO-AN
論文名稱:低溫催化氧化觸媒製備及 VOC氧化降解之研究
論文名稱(外文):Preparation of Low-temperature Oxidation catalyst and oxidative degradation of VOC
指導教授:陳世雄陳世雄引用關係
指導教授(外文):CHEN, SHIH-HSIUNG
口試委員:黃世梁陳世雄劉瑞美
口試委員(外文):HUANG, SHI-LIANGCHEN, SHIH-HSIUNGLIOU, REY-MAY
口試日期:2020-07-02
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:79
中文關鍵詞:臭氧揮發性有機物催化氧化金屬氧化物觸媒低溫
外文關鍵詞:OzoneVOCcatalytic oxidationmetal oxidecatalystlow temperature
相關次數:
  • 被引用被引用:0
  • 點閱點閱:47
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討以新型固化劑與金屬氧化物塗佈於分子篩和陶瓷環載體製作成催化氧化觸媒並使用於氣相降解揮發性有機物催化臭氧降解,研究主要探討塗佈劑之組成及燒結條件對於銅(Cu)型觸媒、鐵(Fe) 型觸媒以及錳(Mn) 型觸媒之表面特性與催化氧化性能之影響。
本研究以填充床反應器進行觸媒臭氧催化降解揮發性有機物, 研究結果顯示金屬氧化物與固結劑於不同表面具有差異極大之附著性,鐵型氧化物於分子篩載體不具有良好附著性,錳型與銅型金屬則呈良好之附著效果,另一方面製作之陶瓷載體觸媒時,銅型、鐵型、錳型金屬氧化物固結於陶瓷載體時均成良好之附著效果。研究結果顯示,由於觸媒填充密度之差異,分子篩型觸媒在催化氧化之效率高於陶瓷載體觸媒,探討三種金屬觸媒在不同的載體上活性時發現,不論何種金屬觸媒於操作溫度350℃已上時VOC去除率皆在穩定達到99%以上,其中鐵型觸媒於其氧化型式顯著影響對於VOC氧化降解之活性,Cu型與Mn型則對催化活性差異無明顯影響,研究中改變空間流速、進氣量、VOC濃度、臭氧劑量等條件,於室溫下各型金屬觸媒皆呈現出顯著催化氧化效果,其中Mn型觸媒於最適條件下可達90%之去除效率,而Cu型在相同條件下達到70%之去除效率,而250℃溫度之下的反應溫度會隨著觸媒不同去除率有所差異,金屬觸媒對VOC催化氧化效率Mn型>Cu型>Fe型。

A new coating agent was used to prepare supported metal oxides catalyst for catalytic ozonation of VOC in air pollution. The support materials, costing composition, metal oxides and sintering conditions were investigated to improve the activity of catalyst on ozonation of VOC and the properties of catalyst.
The investigation of catalytic ozonation of VOC were processed in the packed bed reactor. It is indicated that coating properties significant depend on the surface properties of metal oxides and support material. Poor coating properties of iron oxides on molecular sieve support, but all metal oxides presented well coating properties on the ceramic surface. In this investigation, it was found that catalytic ozoanation activity of molecular sieve catalyst are superior than the ceramic supported catalyst with all metal oxides due to the well packing density molecular sieve catalyst. It was found that all metal oxides catalyst present completely VOC conversion above 350℃ under any ozone concentration in oxidation. On the other hand, the results indicated that the crystal form of iron oxides strongly influenced the activity of ozonation of VOC under reaction temperature 250℃. The copper and manganese oxides catalysts showed the less difference on the activity of ozonation at low temperature. All the influent parameters, such as space velocity, VOC concentration, ozone concentration and temperature, were discussed in this study, it is indicated that all type of catalyst showed a good activity of ozonation on degradation of VOC at room temperature. The type of manganese oxides catalyst showed the best performance (over 90%) on low temperature decomposition performance on VOC. The type of Copper oxides catalyst showed an over 70% VOC removal at room temperature. The superior ozonation performance of VOC was found in this study and the activity of catalyst showed in series of MnOx > CuOx > FeOx.

目錄
摘要 I
Abstract III
致謝 V
目錄 VI
第一章 前言 1
1-1研究背景 1
1-2研究目的 2
第二章 文獻回顧 3
2-1污染物簡介 3
2-1-1揮發性有機物(VOC) 3
2-1-2甲醇特性及對人體之危害 4
2-2 VOC處理技術以及應用 5
2-3觸媒氧化 10
2-3-1 均相與非均相系觸媒 11
2-3-2負載型金屬觸媒 12
2-3-3 觸媒載體種類 12
2-3-4 金屬觸媒種類 13
2-3-5 金屬觸媒的衰退 14
2-3-6臭氧/觸媒氧化程序 16
第三章 實驗材料、設備與方法 19
3-1實驗藥品 19
3-1-1金屬觸媒製作藥品及材料 19
3-1-2氧化實驗 19
3-2實驗設備 20
3-2-1觸媒製備設備及器材 20
3-2-2氧化設備及器材 20
3-3實驗架構與流程 21
3-3-1塗佈觸媒之製備流程圖 21
3-3-2觸媒擔體及前處理 22
3-3-3觸媒之金屬活化劑披覆 22
3-3-4實驗架構流程圖 23
3-4 臭氧催化氧化觸媒實驗方法 24
3-4-1臭氧(O3)濃度測定方法 25
3-4-2催化氧化系統實驗操作之參數 25
3-4-2觸媒催化氧化系統設備架構 26
第四章 結果與討論 27
4-1金屬觸媒披覆效果篩選 27
4-2臭氧濃度測試 32
4-3空白處理效率測試 33
4-3-1低濃度下空白處理效率 33
4-3-2高濃度下空白處理效率 33
4-4金屬觸媒處理效率之特性分析 36
4-4-1 FC23型與FC2型陶瓷環觸媒在高濃度下催化氧化之差異 36
4-4-2 FC2型氧化觸媒高濃度VOC下之催化氧化效率 40
4-4-3 FC2型與CC3型氧化觸媒低濃度VOC下催化氧化效率比較 45
4-4-4 CC3型與CM3型氧化觸媒低濃度下催化氧化效率比較 49
4-4-5 CM3型與MM3型氧化觸媒低濃度下催化氧化效率比較 53
4-4-6 CM3型與MM3型氧化觸媒高濃度下催化氧化效率比較 56
4-4-7 CM3型與MM3型氧化觸媒在低濃度下不同空間流速之比較 66
第五章 結論 69
參考文獻 72
圖目錄
圖2-1 負載型載體觸媒示意圖 12
圖2-2不同載體幾何形狀示意圖 13
圖3-1觸媒製作流程圖 21
圖3-2實驗架構流程圖 23
圖3-3觸媒催化臭氧降解VOC系統圖 26
圖4-1不同臭氧進氣量臭氧濃度之比較 32
圖4-2 低濃度VOC添加臭氧氧化之影響 34
圖4-3低濃度VOC直接臭氧氧化之去除效率 34
圖4-4高濃度VOC添加臭氧氧化之影響 35
圖4-5 高濃度VOC直接臭氧氧化之去除效率 35
圖4-6 FC23型氧化觸媒於催化氧化高濃度VOC之去除效率 37
圖4-7 FC2型氧化觸媒於催化氧化高濃度VOC之去除效率 38
圖4-8 FC2型氧化觸媒與FC23型氧化觸媒之去除效率比較 39
圖4-9 FC2型氧化觸媒於6L/min進氣量催化氧化之去除效率 41
圖4-10 FC2型氧化觸媒於4L/min進氣量催化氧化去除效率 42
圖4-11 FC2型氧化觸媒於2L/min進氣量催化氧化去除效率 43
圖4-12 FC2型氧化觸媒於不同反應物進氣量催化氧化去除效率 44
圖4-13 CC3型氧化觸媒於低濃度VOC下之去除效率 46
圖4-14 FC2型氧化觸媒低濃度VOC下之去除效率 47
圖4-15 FC2型與CC3型氧化觸媒催化氧化去除效率比較 48
圖4-16 CM3型氧化觸媒於低濃度VOC下催化氧化之去除效率 51
圖4-17 CC3型與CM3型氧化觸媒催化氧化之去除效率比較 52
圖4-18 MM3型氧化觸媒6L/min反應物進氣量之催化氧化去除效率 54
圖4-19 CM3型與MM3型氧化觸媒低濃度下催化氧化效率比較 55
圖4-20 CM3型氧化觸媒6L/min反應物進氣量催化氧化之去除效率 57
圖4-21 CM3型氧化觸媒4L/min反應物進氣量催化氧化之去除效率 58
圖4-22 CM3型氧化觸媒2L/min反應物進氣量催化氧化之去除效率 59
圖4-23 MM3型氧化觸媒6L/min反應物進氣量催化氧化之去除效率 61
圖4-24 MM3型氧化觸媒4L/min反應物進氣量催化氧化之去除效率 62
圖4-25 MM3型氧化觸媒2L/min反應物進氣量催化氧化之去除效率 63
圖4-26 CM3型氧化觸媒於不同反應物進氣量之催化氧化去除效率 64
圖4-27 MM3型氧化觸媒於不同反應物進氣量之催化氧化去除效率 65
圖4-28 CM3型氧化觸媒低濃度下不同空間流速催化氧化去除效率 67
圖4-29 MM3型氧化觸媒低濃度下不同空間流速催化氧化去除效率 68
表目錄
表2-1各類型處理技術優缺點比較 9
表2-2催化燃燒用之觸媒性質比較 18
表4-1 三種金屬物在兩種載體上之披覆可行性 27
表4-2氧化銅氧化觸媒變化及其代號 28
表4-3二氧化錳氧化觸媒變化及其代號 28
表4-4三氧化二鐵氧化觸媒變化及其代號 28
表4-5 四種比例下銅型氧化物觸媒之附著率 31
表4-6 四種比例下錳型氧化物觸媒之附著率 31
表4-7 四種比例下鐵型氧化物觸媒之附著率 31


1.蔡嘉緯, 張章堂, 邱求三, 利用 TiO2 光觸媒填充床處理室內揮發性有機物之研究. 國立宜蘭大學工程學刊/第 3 期/民 96.02/頁 125-142, 2007.
2.Liu, Y., et al., Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts. Chinese Journal of Catalysis, 2016. 37(8): p. 1193-1205.
3.Njagi, E.C., et al., Catalytic oxidation of ethylene at low temperatures using porous copper manganese oxides. Applied Catalysis A: General, 2012. 421: p. 154-160.
4.Guo, H., et al., Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta? Journal of hazardous materials, 2011. 188(1-3): p. 116-124.
5.蔡文田, 含氯溶劑可行減廢技術介紹. 1993, 工業污染防治.
6.Gałęzowska, G., M. Chraniuk, and L. Wolska, In vitro assays as a tool for determination of VOCs toxic effect on respiratory system: a critical review. TrAC Trends in Analytical Chemistry, 2016. 77: p. 14-22.
7.黃振家, 揮發性有機廢棄處理技術:活性碳吸附. 化工第44卷, 1997. 第三期(49-59).
8.Winchester, J., Methanol, isopropyl alcohol, higher alcohols, ethylene glycol, cellosolves, acetone, and oxalate, in Clinical management of poisoning and drug overdose. 1983, Saunders, Philadelphia. p. 393-410.
9.劉昱翬, 白曛綾,張宗良, 利用氧化錳觸媒去除氣流中臭氧, 一氧化碳與異丙醇之研究. 2004.
10.Zhang, Z., Z. Jiang, and W. Shangguan, Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catalysis Today, 2016. 264: p. 270-278.
11.蔡文田、張慶源, 揮發性有機物(VOCs)催化燃燒處理. 環境工程會刊, 1992. 第四期(41-58).
12.周明顯, 揮發性有機物及臭味控制技術. 環保資訊月刊第54期, 2002.
13.Gao, S., et al., The preparation of activated carbon discs from tar pitch and coal powder for adsorption of CO2, CH4 and N2. Microporous and Mesoporous Materials, 2017. 238: p. 19-26.
14.Sano, A., M. Takaoka, and K. Shiota, Vapor-phase elemental mercury adsorption by activated carbon co-impregnated with sulfur and chlorine. Chemical Engineering Journal, 2017. 315: p. 598-607.
15.Zhang, X., et al., Biochar for volatile organic compound (VOC) removal: sorption performance and governing mechanisms. Bioresource technology, 2017. 245: p. 606-614.
16.Devinny, J.S., M.A. Deshusses, and T.S. Webster, Biofiltration for air pollution control. 1998: CRC press.
17.Padhi, S.K. and S. Gokhale, Biological oxidation of gaseous VOCs–rotating biological contactor a promising and eco-friendly technique. Journal of Environmental Chemical Engineering, 2014. 2(4): p. 2085-2102.
18.Mudliar, S., et al., Bioreactors for treatment of VOCs and odours–A review. Journal of environmental management, 2010. 91(5): p. 1039-1054.
19.Luengas, A., et al., A review of indoor air treatment technologies. Reviews in Environmental Science and Bio/Technology, 2015. 14(3): p. 499-522.
20.Belaissaoui, B., Y. Le Moullec, and E. Favre, Energy efficiency of a hybrid membrane/condensation process for VOC (Volatile Organic Compounds) recovery from air: A generic approach. Energy, 2016. 95: p. 291-302.
21.Kullavanijaya, E., D. Trimm, and N.W. Cant, Adsocat: Adsorption/catalytic combustion for VOC and odour control, in Studies in Surface Science and Catalysis. 2000, Elsevier. p. 569-574.
22.牛茜, et al., 催化燃燒法處理揮發性有機化合物研究進展. 現代化工, 2013(11): p. 19-23.
23.Everaert, K. and J. Baeyens, Catalytic combustion of volatile organic compounds. Journal of hazardous materials, 2004. 109(1-3): p. 113-139.
24.Zhu, L., D. Shen, and K.H. Luo, A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. Journal of Hazardous Materials, 2020. 389: p. 122102.
25.黃沛軒, 以 Cu 金屬塗覆爐石處理氨氣之研究. 國立中山大學環境工程研究所碩士論文, 2003.
26.Wu, S.-J., 小型熱再循環觸媒燃燒器之實驗研究及應用. 2003, National Central University.
27.Regalbuto, J., Catalyst preparation. Science and engineering, 2007. 1.
28.徐銘擇, 鋅/鐵, 鋅/銅, 鐵/銅雙金屬活性碳觸媒之製備及觸媒還原反應去除氮氧化物之研究. 2009.
29.Ross, J., Chapter 3-How Does a Catalyst Work? Heterogeneous Catalysis: p. 47-64.
30.Guo, Y., M. Sakurai, and H. Kameyama, Temperature programmed desorption/surface-reaction study of an anodic alumina supported Ag catalyst for selective catalytic reduction of nitric oxide with propene. Applied Catalysis B: Environmental, 2008. 79(4): p. 382-393.
31.Murzin, D.Y. and T. Salmi, Catalytic kinetics. 2005: Elsevier.
32.Lee, K.-C., 以稻殼灰分初濕含浸製備擔體銅觸媒之研究. 2001, National Central University.
33.Gil, A., et al., Influence of the preparation method and the nature of the support on the stability of nickel catalysts. Applied Catalysis A: General, 1994. 109(2): p. 167-179.
34.R.H.Ross, Chapter 7 - Large-Scale Catalytic Reactors. Heterogeneous Catalysis, 2012. 143-169.
35.Li, W., J. Wang, and H. Gong, Catalytic combustion of VOCs on non-noble metal catalysts. Catalysis Today, 2009. 148(1-2): p. 81-87.
36.Diehl, F., et al., Catalytic oxidation of heavy hydrocarbons over Pt/Al2O3. Influence of the structure of the molecule on its reactivity. Applied Catalysis B: Environmental, 2010. 95(3-4): p. 217-227.
37.Van De Beld, L., et al., The catalytic oxidation of organic contaminants in a packed bed reactor. Chemical engineering science, 1994. 49(24): p. 4361-4373.
38.Spivey, J.J., Complete catalytic oxidation of volatile organics. Industrial & Engineering Chemistry Research, 1987. 26(11): p. 2165-2180.
39.Tanabe, K., Solid Acids and Bases Kodansha. 1970, Tokyo, Academic Press, New York, London.
40.陳冠豪, 以溶膠凝膠法製備 MnOx/Al2O3 觸媒焚化處理三氯乙烯之研究. 成功大學環境工程學系學位論文, 2003: p. 1-204.
41.翁澤民, 觸媒焚化處理氣相甲苯之研究. 2004, 撰者.
42.Mehandjiev, D., et al., Catalytic oxidation of CO and C 6 H 6 on alumina-supported Cu-Cr and Co-Cr oxide catalysts in the presence of ozone. Reaction Kinetics and Catalysis Letters, 2002. 76(2): p. 287-293.
43.Einaga, H. and S. Futamura, Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides. Journal of Catalysis, 2004. 227(2): p. 304-312.
44.Einaga, H., Y. Teraoka, and A. Ogata, Catalytic oxidation of benzene by ozone over manganese oxides supported on USY zeolite. Journal of catalysis, 2013. 305: p. 227-237.
45.Einaga, H., N. Maeda, and Y. Teraoka, Effect of catalyst composition and preparation conditions on catalytic properties of unsupported manganese oxides for benzene oxidation with ozone. Applied Catalysis B: Environmental, 2013. 142: p. 406-413.
46.Huang, H., et al., Ozone-catalytic oxidation of gaseous benzene over MnO2/ZSM-5 at ambient temperature: Catalytic deactivation and its suppression. Chemical Engineering Journal, 2015. 264: p. 24-31.
47.Gervasini, A., G. Vezzoli, and V. Ragaini, VOC removal by synergic effect of combustion catalyst and ozone. Catalysis today, 1996. 29(1-4): p. 449-455.
48.Zhao, D.-Z., et al., Enhanced effect of water vapor on complete oxidation of formaldehyde in air with ozone over MnOx catalysts at room temperature. Journal of hazardous materials, 2012. 239: p. 362-369.
49.Rezaei, E. and J. Soltan, EXAFS and kinetic study of MnOx/γ-alumina in gas phase catalytic oxidation of toluene by ozone. Applied Catalysis B: Environmental, 2014. 148: p. 70-79.
50.Ragaini, F., S. Cenini, and S. Tollari, Reduction of nitrobenzene to aniline by CO/H2O catalyzed by Ru3 (CO) 12. Strong activating ability of rigid α-diimine ligands. Journal of molecular catalysis, 1993. 85(1): p. L1-L5.
51.Hutchings, G., M. Scurrell, and J. Woodhouse, Direct partial oxidation of methane: Effect of the oxidant on the reaction. Applied catalysis, 1988. 38(1): p. 157-165.
52.García, T., B. Solsona, and S.H. Taylor, Naphthalene total oxidation over metal oxide catalysts. Applied Catalysis B: Environmental, 2006. 66(1-2): p. 92-99.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔