(3.237.97.64) 您好!臺灣時間:2021/03/04 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳俊煒
研究生(外文):CHEN,CHUN-WEI
論文名稱:金屬-有機框架複合薄膜之製備及於 滲透蒸發之應用
論文名稱(外文):Preparation of metal organic framework composite membranes and applications on dehydration by pervaporation of ethanol solution
指導教授:陳世雄陳世雄引用關係
指導教授(外文):CHEN,SHIH-HSIUNG
口試委員:黃世梁劉瑞美陳世雄 
口試委員(外文):HUANG,SHI-LIANGLIOU,REY-MAYCHEN,SHIH-HSIUNG
口試日期:2020-07-02
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:106
中文關鍵詞:金屬-有機框架聚嗍碸滲透蒸發
外文關鍵詞:metal-organic framework (MOF)polysulfonepervaporation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:39
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究構想利用摻合法製備金屬-有機框架(Metal-organic framework,MOF)/polysulfone複合膜,於鑄膜液中將有機連接劑(organic linker)及金屬離子溶解於鑄膜溶液以濕式相轉換系統製備成MOF複合膜,濕式相轉換過程中有機連接劑因相轉換驅動於界面相反應形成金屬-有機框架混合物之皮層。
利用MOF前驅物濃度梯度之差異可有效控制金屬-有機框架混合物於分離皮層之厚度與晶體孔隙大小,藉由不同濕式成膜條件之應用,製備出MOF/polysulfone平板膜,可藉由有機連接劑分子種類及濃度加以改變MOF複合膜中之孔隙,MOF內孔因具金屬離子中心而具高親水性,因此具備對水高度之選擇性,另一方面MOF薄膜奈米級微孔隙將可大幅降低水分子穿透薄膜之阻力,使水分子通透過滲透蒸發薄膜通量大幅增加。
所合成之MOF/polysulfone 薄層複合膜將具備對水高度選擇性且具備高通量之分離性能。本論文探討影響MOF 薄層複合膜分離性能因素包含: linker 種類及濃度、相轉換條件及金屬鹽類添加量控制以及金屬鹽類在成膜中是否分散均勻等對複合膜緻密性及分離特性之影響,所得到適當複合膜結構之MOF薄層複合膜將應用於乙醇-水混合液之滲透蒸發分離。

In this research, the blending method was used to prepare a metal-organic framework (MOF)/polysulfone composite membranes. The organic linker and central metal were dissolved in the casting solution and prepared asymmetric membranes by wet phase inversion method. The MOFs can be migrated to the skin layer of asymmetric membrane due to the organic solvent exchanged in phase inversion process.
The concentration and crystal size of MOFs in the separation layer of membrane can be prepared by the gradient concentration of MOF precursor in casting procedure. Different asymmetric composite membranes can be prepared by using the suitable casting conditions in wet phase inversion. The pore size of MOF crystal can be changed by adjusted the concentration of organic linkers. Due to the ionic central in MOF, the high polarity function group contributed the highly hydrophilic property and expected to obtain a high separation performance of dehydration membranes. On the other hand, the pore of MOF crystal in the skin layer will significantly decreased the barrier of permeate and increased the permeation rate of permeates.
The influent factors on the separation performance of composite membrane will be discussed in this investigation, such as type of linker, linker concentration, casting conditions, and dispersion of MOF in the skin layer. The composite membranes will be applied for dehydration of ethanol solution by pervaporation.

目錄
摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 XI
第一章、 前言 1
1-1、研究動機 1
1-2、研究目的 3
第二章、 文獻回顧 4
2-1、薄膜定義 4
2-1-1、薄膜特性 4
2-2、薄膜結構 7
2-3、薄膜成型原理 9
2-4、薄膜分離 12
2-5、薄膜製備方法 13
2-6、薄膜過濾方式及運作程序 16
2-6-1、薄膜運作程序 18
2-7、薄膜接觸角原理 20
2-8、滲透蒸發原理 23
2-8-1、滲透蒸發基礎輸送機制 25
2-9、金屬有機框架複合膜(Metal-organic framework MOF)/polysulfone 26
2-9-1、金屬有機框架複合膜(MOF)/ZIF-8、MIL-53 29
2-10、薄膜改質親水化 30
2-10-1、(Metal-organic framework)複合膜,添加改質物:單寧酸 34
第三章、 材料與方法 35
3-1、實驗藥品及氣體 35
3-1-1、高分子鑄膜液材料與實驗藥品 35
3-1-2、薄膜親水化實驗 35
3-1-3、薄膜膨潤化實驗 35
3-1-4、滲透蒸發實驗 35
3-1-5、吸附實驗 36
3-2、實驗儀器及設備 36
3-3、實驗流程 38
3-3-1、鑄膜液配置 40
3-3-2、製備MOFs平板膜(Metal-organic framework) 40
3-3-3、表面接觸角測量儀(Contact Angle) 42
3-3-2、膨潤度測試 43
3-3-3、薄膜吸附測試 44
3-3-4、滲透蒸發測試 45
第四章、 結果與討論 47
4-1、MOF含量對金屬有機框架(MOFs)複合膜表面親疏水性影響 48
4-1-1、ZIF-8複合膜鑄膜液高分子濃度對於接觸角之影響 49
4-1-2、添加不同ZIF-8比例對複合膜接觸角之影響 50
4-1-3、不同類型MOF添加單寧酸對接觸角影響 51
4-2、金屬有機框架(MOFs)複合膜滲透蒸發過程中對膨潤度影響 53
4-2-1、進料液乙醇濃度變化對ZIF-8膨潤度之影響 54
4-2-2、不同乙醇濃度對不同類型MOF膨潤度之影響 55
4-3、金屬有機框架(MOFs)複合膜滲透蒸發之分離探討 59
4-3-1、不同鑄膜液濃度對滲透蒸發之選擇比影響 60
4-3-2、不同比例MOF對ZIF-8複合膜選擇比影響 63
4-3-3、滲透蒸發實驗進料液溫度變化對於ZIF-8複合膜選擇比之影響 64
4-3-4、滲透蒸發實驗進料液溫度變化對於MIL-53複合膜選擇比之影響 78
4-4、進料液濃度及溫度對於MOFs複合膜吸附之影響。 92
第五章、 結論 95
第六章、 參考文獻 96
圖目錄
圖2- 1、(左)對稱型薄膜(右)非對稱型薄 8
圖2- 2、高分子/溶劑/非溶劑三相組成示意圖 11
圖2-3、溶劑/凝聚劑相互擴散示意圖 11
圖2- 4、薄膜過濾示意圖 12
圖2- 5、垂直式過濾與掃流式過濾 17
圖2- 6、掃流式過濾與作用力 17
圖2- 7、薄膜積垢 (a)完全阻塞 (b)標準阻塞 (c)膠羽層/濾餅層阻塞 19
圖2- 8、接觸角原理 20
圖2- 9、Wenzel's Theory 表面圖 22
圖2- 10、Cassie's Theory 表面圖 22
圖2- 11、滲透蒸發-溶液擴散過程 24
圖2- 12、蒸餾分離乙醇/水混合物 24
圖2- 13、MOF種類晶體結構 26
圖2- 14、最佳MOF負載量對複合膜選擇性的影響 27
圖2- 15、通過MMM的非理想滲透物傳輸特性 28
圖2- 16、The channel is constructed of eight homochiral helical chains with18.3Å ×22.4Å of JUC-60 30
圖2- 17、孔洞填充法 31
圖2- 18、界面聚合法 31
圖2- 19、高分子摻合法 32
圖2- 20、化學接枝法 33
圖2- 21、MOF薄膜表面親水化 34
圖3- 1、 MOFs複合膜合成 38
圖3- 2、實驗架構流程圖 39
圖3- 3、製備平板膜 41
圖3- 4、接觸角示意圖 42
圖3- 5、Pervaporation test setup: 46
圖4- 1、ZIF-8複合膜鑄膜液濃度對接觸角影響 49
圖4- 2、添加不同ZIF-8比例對複合膜接觸角之影響 50
圖4- 3、ZIF-8複合膜添加單寧酸對接觸角之影響(鑄膜液濃度26wt%) 52
圖4- 4、MIL-53複合膜添加單寧酸對接觸角之影響(鑄膜液濃度26wt%) 52
圖4- 5、不同含量ZIF-8複合膜在不同乙醇濃度之澎潤度 54
圖4- 6、不同MOF比例ZIF-8型複合膜在不同乙醇濃度下膨潤度之影響 57
圖4- 7、不同MOF比例ZIF-8型複合膜/單寧酸在不同乙醇濃度下膨潤度之影響 57
圖4- 8、不同MOF比例MIL-53型複合膜在不同乙醇濃度膨潤度之影響 58
圖4- 9、不同MOF比例MIL-53型複合膜/單寧酸在不同乙醇濃度膨潤度之影響 58
圖4- 11、未添加ZIF-8應用於滲透蒸發之選擇比(鑄膜液18-21wt%) 62
圖4- 12、添加ZIF-8應用於滲透蒸發之選擇比(鑄膜液18-21wt%) 62
圖4- 13、不同比例MOF對ZIF-8複合膜選擇比影響(鑄膜液濃度21wt%) 63
圖4- 14、溫度15°C ZIF-8複合膜滲透蒸發之選擇比、滲透率 67
圖4- 15、溫度15°C ZIF-8/單寧酸複合膜滲透蒸發之選擇比、滲透率 67
圖4- 16、溫度25°C ZIF-8複合膜滲透蒸發之選擇比、滲透率 71
圖4- 17、溫度25°C ZIF-8/單寧酸複合膜滲透蒸發之選擇比、滲透率 71
圖4- 18、溫度35°C ZIF-8複合膜滲透蒸發之選擇比、滲透率 75
圖4- 19、溫度35°C ZIF-8/單寧酸複合膜滲透蒸發之選擇比、滲透率 75
圖4- 20、不同溫度 ZIF-8複合膜滲透蒸發之選擇比 77
圖4- 21、不同溫度 ZIF-8/單寧酸複合膜滲透蒸發之選擇比 77
圖4- 22、溫度15°C MIL-53複合膜滲透蒸發之選擇比、滲透率 81
圖4- 23、溫度15°C MIL-53/單寧酸複合膜滲透蒸發之選擇比、滲透率 81
圖4- 24、溫度25°C MIL-53複合膜滲透蒸發之選擇比、滲透率 85
圖4- 25、溫度25°C MIL-53/單寧酸複合膜滲透蒸發之選擇比、滲透率 85
圖4- 26、溫度35°C MIL-53複合膜滲透蒸發之選擇比、滲透率 89
圖4- 27、溫度35°C MIL-53/單寧酸複合膜滲透蒸發之選擇比、滲透率 89
圖4- 28、不同溫度MIL-53複合膜滲透蒸發之選擇比 91
圖4- 29、不同溫度MIL-53/單寧酸複合膜滲透蒸發之選擇比 91
圖4- 30、不同進料液濃度對於ZIF-8複合膜吸附之影響 93
圖4- 31、不同進料液濃度對於ZIF-8/單寧酸複合膜吸附之影響 93
圖4- 32、不同進料液濃度對於MIL-53複合膜吸附之影響 94
圖4- 33、不同進料液濃度對於MIL-53/單寧酸複合膜吸附之影響 94


表目錄
表2- 1、有機膜和無機膜的比較 6
表4- 1、進料液溫度15°C及ZIF-8,ZIF-8/單寧酸複合膜之差異 66
表4- 2、進料液溫度25°C及ZIF-8,ZIF-8/單寧酸複合膜之差異 70
表4- 3、進料液溫度35°C及ZIF-8,ZIF-8/單寧酸複合膜之差異 74
表4- 4、進料液溫度15°C及MIL-53、MIL-53/單寧酸複合膜之差異 80
表4- 5、進料液溫度25°C及MIL-53,MIL-53/單寧酸複合膜之差異 84
表4- 6、進料液溫度35°C及MIL-53、MIL-53/單寧酸複合膜之差異 88



1.V. Calabrò, A. Basile, Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications, (2011), 3-21.
2.郭文正、曾添文。1988。薄膜分離。高立圖書公司。
3.A. Verhoef, A. Figoli, B. Leen, B. Bettens, E. Drioli, B. Van der Bruggen, Performance of a nanofiltration membrane for removal of ethanol from aqueous solutions by pervaporation. Separation and Purification Technology, 2008. 60(1): 54-63.
4.A. Kayvani Fard, G McKay, A. Buekenhoudt, A. Al Sulaiti, H. Motmans, M. Khraisheh, M. Atieh, Inorganic Membranes: Preparation and Application for Water Treatment and Desalination.
5.鄭湘鈴。2019。正滲透回收生活污水之研究。嘉南藥理大學環境工程與科學系碩士論文。
6.林錦甫。2018。超親水陶瓷複合膜管之製備及微小粉體分離特性之研究。嘉南藥理科技大學環境工程與科學系碩士論文。
7.M. Mulder, Basic Principles of Membrane Technology second edition 清華大學出版社 (1996).
8.M. A. Frommer , R. M. Messalem, Mechanism of membrane formation. VI. Convective flows and large void formation during membrane precipitation , Ind. Eng. Chem. Prod. Res. Develop., 12(1973)328.
9.R. J. Ray, W. B. Krantz, R. L. Sani, Linear stability theory model for finger formation in asymmetric membranes, J. Membrane Sci., 23(1985)155.
10.H. Strathmann, K. Kock, P. Amar, R. W. Baker, The formation mechanism of asymmetric membranes, Desalination, 16 (1975)179.
11.L. Broens, F. W. Altena, C. A. Smolders, Asymmetric membrane structures as a result of phase separation phenomena, Desalination, 32(1980)33.
12.A.J. Reuvers, Membrane formation : Diffusion induced demixing processes in ternary systems, Ph. D. Thesis, Twente University of Technology, The Netherlands, (1987).
13.李雨霖。2010。水處理用薄膜模組及其應用。中原大學薄膜技術研發中心。
14.H. Strathmann , K. Kock, The formation mechanism of phase inversion membrane, Desalination 21 (1977) 214~255.
15.范舒晴。2004。聚醯胺與聚醯亞胺膜於滲透蒸發與蒸氣揮發之研究。中原大學化學工程研究所學位論文。
16.M. Mulder, Basic principles of membrane technology, Kluwer Academic Publishers, The Netherlands, 1996.
17.R.E. Kesting, Synthetic polymeric membrane, John Wiley, New York,(1985).
18.M. Kurata, Thermodynamics of polymer solutions, Harwood Academic,London, Volume 19, Issue 1, (1994), 1-28.
19.P. Vandeweerdt, H. Berghmans, Temperature-concentration behavior of solution polydisperse, atactic poly(methyl methacrylate) and its influence on the formation of amorphous microporous membranes, Macromolecules, 24 (1991) 3547~3552.
20.F.J. Hua, T.G. Park, D.S. Lee, Facile preparation of highly interconnected macroporous poly(D,L-lactic acid-co-glycolic acid) (PLGA) scaffolds by liquid–liquid phase separation of a PLGA–Dioxane–Water ternary system, Polymer 44 (2003) 1911~1920.
21.L. Zeman, T. Fraser, Formation of air-cast cellulose acetate membranes, part II. kinetic of demixing and macrovoid growth, J. Membr. Sci., 87(1993) 267~279.
22.R.W. Baker, L. Huang, Euromembrane 97, Twente, The Netherlands, (1997).
23.S.L. Huang, M.S. Chao, J.Y. Lai, Diffusion of ethanol and water through PU membrane, Eur. Polym. J. 34 (1998) 449~454.
24.H.D.W. Roesink, PhD Thesis, University of Twente, (1989).
25.A.F.M. Leenaars, PhD Thesis, University of Twente, (1984).
26.R.W. Baker, Membrane technology and application, McGraw-Hill Companies, (2000).
27.R.Y.M. Huang, R. Pal, G.Y. Moon, Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two ply composite membranes supported by poly(vinylidene fluoride) porous membrane, J. Membr. Sci. 167(2000) 275~289.
28.F.C. Lin, D.M. Wang , J.Y. Lai, Asymmetric TPX membranes with high gas flux, J. Membr. Sci. 110 (1996) 25~36.
29.S.L. Huang, M.S. Chao, J.Y. Lai, Diffusion of ethanol and water through PU membrane, Eur. Polym. J. 34 (1998) 449~454.
30.J. Mallevialle, P.E. Odendaal, M.R. Wiesner, Water treatment membrane processes. American Water Works Association. (1996)
31.黃信翰。2011。新式中空纖維膜之製備技術及滲透蒸發之應用。嘉南藥理大學環境工程與科學系碩士論文。
32.W. Bowen, J. Calvo, A. Hernandez, Steps of membrane blocking in flux decline during protein microfiltration. Journal of Membrane Science, (1995) , 101(1-2): 153-165.
33.K. Ma, T.S. Chung, R.J. Good, Surface energy of thermotropic liquid crystalline polyesters and polyesteramide. Journal of Polymer Science Part B: Polymer Physics, (1998). 36(13): 2327-2337.
34.A.Cassie, S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, 1944. 40: p. 546-551.crystalline polyesters and polyesteramide. Journal of Polymer Science Part B: Polymer Physics, (1998). 36(13): 2327-2337.
35.P. M. Bungay, H. K. Lonsdale, M. N. de Ponho, Synthetic membrane: science, engineering and applications D. Reidel Pub. Co. Hollan(1986)
36.J.G. Wijmans, R.W. Baker, The solution-diffusion model: Areview Journal of Membrane Science 107 (1-2) (1995) 1-21.
37.J. Kaschemekat, B. Barbknecht, K.W. Böddeker,Concentration ofethanol by pervaporation , Chem. Ing. Tech. 58 (1986) 740-742.
38.S.C. George, S. Thomas, Transport phenomena through polymeric systems, Prog. Polym. Sci. 26 (2001) 985~1017.
39.Q.Shilun, Z.Guangshan, Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties, Coordination Chemistry Reviews 253 (2009) 2891–2911.
40.S. Beatriz, Sonia Castellanos, Alla Dikhtiarenko, Freek Kapteijn, Jorge Gascon, Multi-scale crystal engineering of metal organic frameworks, Coordination Chemistry Reviews 307 (2016) 147–187.
41.K. Alexandra, Y.S. Lin, Organic solvent pervaporation properties of MOF-5 membranes, Separation and Purification Technology 121 (2014) 38–45.
42.Z. Yue, W. Naixin, J.Shulan, Z. Rong, Z. Cui, L. Jian-Rong, Metal–organic framework/poly(vinylalcohol) nanohybrid membrane for the pervaporation of toluene/n-heptane mixtures, Journal of Membrane Science 489(2015)144–152.
43.Z. Guojun, L. Jie, W. Naixin, F. Hongwei, Z. Rong , Z. Guojun, J. Shulan, Enhanced flux of polydimethylsiloxane membrane for ethanol permselective pervaporation via incorporation of MIL-53 particles, Journal of Membrane Science 492(2015)322–330.
44.D. Lisa, B. Helge, W. Dennis, C. Jürgen, Pervaporation studies of n-hexane, benzene,mesitylene and their mixtures on zeolitic imidazolate framework-8 membranes, Microporous and Mesoporous Materials 164 (2012) 288–293.
45.F. Lili, X. Ming, K. Zixi, W. Guoying, H.Lin, S. Jiushu, Z. Daliang, Q. Shilun, ZIF-78 membrane derived from amorphous precursors with permselectivity for cyclohexanone/cyclohexanol mixture, Microporous and Mesoporous Materials 192 (2014) 29–34.
46.Q. Shilun, Z. Guangshan, Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties, Coordination Chemistry Reviews 253 (2009) 2891–2911.
47.A. Elda, A.K. Ahmet, K. Seda, Opportunities and challenges of MOF-based membranes in gas separations, Separation and Purification Technology 152 (2015) 207–237.
48.L. Wanbin, Z. Yufan, L. Qingbiao, Z. Guoliang, Metal organic framework composite membranes: Synthesis and separation applications, Chemical Engineering Science 135(2015)232–257.
49.M. Z. Catherine, S. Anshu, W. J. Koros, Tailoring mixed matrix composite membranes for gas separations, Journal of Membrane Science 137 (1997) 145-154.
50.A.T. Joshua, T.V. Justin, A. B. Nicholas, J. K. William, W. J. Christopher, Sankar Nair, Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas, Microporous and Mesoporous Materials 192 (2014) 43–51.
51.Q. Shilun, Z. Guangshan, Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties, Coordination Chemistry Reviews 253 (2009) 2891–2911.
52.A. Elda, K.A. Ahmet, K. Seda, Opportunities and challenges of MOF-based membranes in gas separations, Separation and Purification Technology 152 (2015) 207–237.
53.R. Jiraratananon, A. Chanachai , R.Y.M. Huang, Pervaporation dehydration of ethanol–water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite membranes II. Analysis of mass transport, Journal of Membrane Science 199 (2002) 211–222.
54.O. Soliu ,E.D. Ganiyu, H. van, C. Marc, E. Giovanni, A.O. Mehmet, Coupling of membrane filtration and advanced oxidation processes, for removal of pharmaceutical residues: A critical review, Separation and Purification Technology 156 (2015) 891–914.
55.P. Shao , R.Y.M. Huang, Polymeric membrane pervaporation, Journal of Membrane Science 287 (2007) 162–179.
56.S.H. AreviewSeyed, B. Eugenio, R.T. Nicolas, O. Inmaculada, G. Maral, A. A.S.Mohammad, Recent progress in development of high performance polymericmembranes and materials for metal plating wastewater treatment: A review, Journal of Water Process Engineering 9 (2016) 78–110.
57.P. Shao , R.Y.M. Huang, Polymeric membrane pervaporation, Journal of Membrane Science 287 (2007) 162–179.
58.L. Cuihua, L. Jianhong ,G. Rong , Z. Peixin, Z. Qianling, Effect of heating and stretching membrane on ionic conductivity of sulfonated poly(phenylene oxide) Journal of Membrane Science 287 (2007) 180–186.
59.K. Kim, K. Sung-Kon, P. Jung Ock , C. Seong-Woo, K. Ki-Hyun, K. Taeyun,P. Chanho, L.Jong-Chan, Highly reinforced pore-filling membranes based on sulfonated poly (arylene ether sulfone) s for high-temperature/low-humidity polymer electrolyte membrane fuel cells. Journal of Membrane Science, 537: (2017) .11-21.
60.T. Yamaguchi, H. Kuroki, F. Miyata, DMFC performances using a pore-filling polymer electrolyte membrane for portable usages. Electrochemistry Communications, 7(7): (2005). 730-734.
61.N. Wang, S. Ji, J. Li, R. Zhang, G. Zhang, Poly (vinyl alcohol)–graphene oxide nanohybrid pore-filling embrane for pervaporation of toluene/n-heptane mixtures. Journal of Membrane Science, (2014). 455: 113-120.
62.B. Khorshidi, T. Thomas, S. Mohtada, A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes. Sci Rep, (2016). 6: 22069.
63.B. Jeong, E. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, . A. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. Journal of Membrane Science, (2007). 294(1-2): 1-7.
64.K. Y. Wang, T.S. Chung, G. Amy, Developing thin‐film‐composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization. AIChE journal, (2012). 58(3): 770-781.
65.D. Hulicova, A. Oya, The polymer blend technique as a method for designing fine carbon materials. Carbon, 41(7): (2003). 1443-1450.
66.J.-H. Choi, J. Jegal, W.-N. Kim, Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. Volume 284, Issues 1–2, 1 November (2006), 406-415
67.Y.-H. Zhao, B. Zhu, L. Kong, Improving hydrophilicity and protein resistance of poly (vinylidene fluoride) membranes by blending with amphiphilic hyperbranched-star polymer. Langmuir, (2007). 23(10): 5779-5786.
68.A. Razmjou, J. Mansouri, V. Chen, The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. Journal of Membrane Science, (2011). 378(1-2): 73-84.
69.S. Liang, G. Qi, K. Xiao, J. Sun, E.P. Giannelis, X. Huang, M. Elimelech, Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: implications for organic fouling in membrane bioreactors. Journal of Membrane Science, (2014). 463: 94-101.
70.J.Y. Park, H. A. Metin, A. Ariya, K. William, M.M. Anne, Polysulfone-graft-poly (ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials, (2006). 27(6): 856-865.
71.B. Van der Bruggen, Chemical modification of polyethersulfone nanofiltration membranes: a review. Journal of Applied Polymer Science, (2009). 114(1): 630-642.
72.D.S. Wavhal, E.R. Fisher, Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization. Journal of Membrane Science, (2002). 209(1): 255-269.
73.S.C. Lim, H. K. Seong, H. L. Jung , K.K. Mi , J. K. Do, Z. Taehyoung, Surface-treatment effects on organic thin-film transistors. Synthetic Metals, (2005). 148(1): 75-79.
74.S. Jeong, S. Bongsu, J. Wonjin, K. Ho-Young, M. Myoung-Woon, L.Seockheon, Nanostructured PVDF membrane for MD application by an O2 and CF4 plasma treatment. Desalination, (2016). 399: 178-184.
75.H.I. Kim, S.S. Kim, Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane. Journal of Membrane Science, (2006). 286(1-2): 193-201.
76.J. Lim , Y. In-Sung, K.N. Ha, Y. Young Il, J. Da Hyun, J. Sung Youn, M. Byung-Moo, P. Won Ho, Donghwan ChoHydrophobization of silk fibroin nanofibrous membranes by fluorocarbon plasma treatment to modulate cell adhesion and proliferation. Int J Biol Macromol. (2009) Apr 1;44(3):222-8.
77.M. Yingshuang, S. Lun, L. Lu, W. Yuqi, X. Lin-Hua, Z. Min-Jian, L. Jian-Rong, A high-flux mixed matrix nanofiltration membrane with highly water-dispersible MOF crystallites as filler. Journal of membrance science 591. (2019). 117360.

電子全文 電子全文(網際網路公開日期:20250714)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔