跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/26 00:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林志儒
研究生(外文):LIN,ZHI-RU
論文名稱:二次煉鋁業熔煉程序於作業環境中細懸浮微粒之特性研究
論文名稱(外文):The Characteristics of fine Suspended Particles in the Working Area of the Secondary Aluminum Smelting Process
指導教授:米孝萱米孝萱引用關係
指導教授(外文):MI,HSIAO-HSUAN
口試委員:蔡瀛逸謝連德
口試委員(外文):TSAI,YING-IHSIEH,LIEN-TE
口試日期:2020-07-30
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:126
中文關鍵詞:二次煉鋁製程細懸浮微粒粒徑分布
外文關鍵詞:secondary aluminum processingfine suspended particulateparticle size distribution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本研究以南部某二次煉鋁廠熔煉程序所產生之懸浮微粒進行之採樣與分析,以探討廠內之主要生產區與區外周邊造成污染貢獻之差異。本研究就製程於每月不同生產負荷所造成廠區逸散情形進行24小時連續採樣,採樣設備包括TSP Hi-Vol air Sampler、Personal Environmental Monitor及MOUDI。
研究結果顯示,此二次煉鋁廠於工作日製程區熔煉區之週間總懸浮微粒(TSP)之日平均值介於1070~1200 g/m3,週間之日平均值為1100±70.1 g/m3。該廠區週間於週三的日平均濃度最高,而週五因為即將休息所投的料相對較少,故其濃度值較低。製程區之日總平均濃度為1082±201 g/m3,同時段之周界之日平均值為101±28.4 g/m3。若以休息日之採樣分析結果比較之,廠內製程區於休息日之日平均值為91.4 ±27.1 g/m3,而同時周界休息日平均值約為53.4±22.3 g/m3。製程熔煉區與及休息日之TSP濃度比值達11.9倍之多,顯示污染來源仍受鋁二次熔煉過程之粉塵逸散有關。
工作日製程區PM2.5總平均值為441±107 g/m3,而同時製程區PM10總平均值為573±134g/m3。廠內製程區域PM2.5/PM10之平均濃度比值約為0.77±0.09,工作日周界之PM2.5總平均值為31.5±17.4 g/m3,而同時周界PM10總平均值為53.0±25.4 g/m3,而工作日周界之PM2.5/PM10濃度比值約為0.58±0.08,休息日製程區PM2.5總平均值為24.8±19.0 g/m3,而同時製程區PM10總平均值為47.4±g/m3,休息日製程區PM2.5/PM10之濃度比值約為0.48±0.23,由此亦可明顯判斷熔煉過程應排放較多PM2.5的機會相對高,在停工時PM2.5之空間濃度比例相對降低許多。
在未設置污染防制設備的作業環境中,細微顆粒之採樣,有助於定性判斷主要粒狀物之污染排放源。本研究針對二次煉鋁廠熔煉區,由高溫爐製程區之粒徑分布趨勢非常相近且均呈現雙峰分布,粒徑高峰分別落在於0.18~0.56 m和3.2~10 m之間,製程區休息日落在於3.2~5.6 m,周界採樣區工作日落在於3.2~5.6 m,而除渣作業落在於3.2~18 m,該廠區從粒徑分布就能判斷是工作日或是除渣日。
二次煉鋁排放粉塵中相對較高的濃度由大到小分別是鈉>鋁>鋅>鐵>鉀>鈦>銅。以所採集粉塵微粒金屬總分析元素100%為計,占其比例為鈉、鋁、鋅、鐵、鉀、鈦、銅分別占了34.3%、25.9%、12.9%、12.0%、6.86%、3.72%、1.07%,剩餘17種重金屬占了粉塵3.16%,顯示二次煉鋁粉塵排放粉塵以鈉、鋁、鋅、鐵為主要成分,可為二次煉鋁廠粉塵元素指標。

This study sampled and analyzed suspended particulates emitted from the smelting process of a secondary aluminum smelting plant in southern Taiwan to explore the difference between the contributions of the main processing area and surrounding region of the plant to the pollution. Each month, sampling was performed continuously for 24 hours during smelting processes of varying loads to examine dust emission from the plant. The instruments used for sampling were the TSP Hi-Vol air sampler, a personal environmental monitor, and the MOUDI impactor.
The results revealed that the daily average total suspended particulate (TSP) concentration collected on weekdays was 1070–1200 g/m3 in the smelting area during work days, and the daily average TSP on weekdays was 1100 ± 70.1 g/m3. The highest daily average TSP was observed on Wednesdays, whereas the lowest daily average TSP was observed on Fridays, during which less materials were fed because the plant was about to be closed on the weekend. The daily average TSP of the processing area was 1082 ± 201 g/m3, whereas that of the surrounding region measured during the same period was 101 ± 28.4 g/m3. On rest days, the daily average TSP was 91.4 ±27.1 g/m3 in the processing area and 53.4±22.3 g/m3 in the surrounding region. The daily average TSP of the processing area during work days was 11.9 times that during rest days. This indicated that the pollution was contributed by dust emission during secondary aluminum smelting.
The average total PM2.5 and PM10 concentrations of the processing area during work days were 441 ± 107 and 573 ± 134 g/m3, respectively; the ratio of average PM2.5 to average PM10 in the processing area was 0.77 ± 0.09. During work days, the average total PM2.5 and PM10 concentrations of the surrounding region on work days were 31.5 ± 17.4 and 53.0 ± 25.4 g/m3, respectively; the ratio of average PM2.5 to average PM10 was 0.58 ± 0.08. The average total PM2.5 and PM10 concentrations of the processing area during rest days were 24.8 ± 19.0 and 47.4 ± 11.5 g/m3, respectively; the ratio of average PM2.5 to average PM10 in the processing area was 0.48 ± 0.23. This indicated that a higher amount of PM2.5 was emitted during the smelting process; hence, the spatial concentration of PM2.5 was lower during the rest days than on the work days.
Collecting particulate samples in working environments that are not installed with pollution control equipment facilitated the qualitative identification of main particulate emission sources. The particle size distribution graph of the processing area during work days showed a double-peak pattern, with the two peaks appearing close to each other at 0.18–0.56 and 3.2–10 m. The particle size peak of the processing area during rest days appeared at 3.2–5.6 m; that of the surrounding region during the work days appeared at 3.2–5.6 m; and that during the deslagging operation appeared at 3.2–18 m. Therefore, particle size distribution data can be used to quickly determine whether a sample is collected during a work or deslagging day.
The heavy metal elements detected in the dust emitted from secondary aluminum smelting were, in descending order of proportion of total heavy metal concentration (100%), sodium(Na) (34.3%), aluminum(Al) (25.9%), zinc(Zn) (12.9%), iron(Fe) (12.0%), potassium(K) (6.86%), titanium(Ti) (3.72%), and copper(Cu) (1.07%). The remaining 3.16% was constituted by 17 heave metals. This indicated that the dust emitted from secondary aluminum smelting was mostly composed of sodium(Na), aluminum(Al), zinc(Zn), and iron(Fe). These elements can serve as characteristic elements of dust in secondary aluminum smelting plants.


摘要 I
ABSTRACT III
致謝 VII
目錄 IX
圖目錄 XIII
表目錄 XVII
第一章 緒論 1
1-1研究緣起 1
1-2研究目的 2
1-3研究流程 4
第二章 文獻探討 7
2-1金屬工業介紹 7
2-1-2二次煉鋁廠 7
2-1-3高溫反射爐 8
2-2金屬工業特性 11
2-3懸浮微粒 12
2-3-1細懸浮粒定義 13
2-3-2懸浮微粒之分布 14
2-3-3 PM2.5污染來源 18
2-3-4懸浮微粒之形成機制 20
2-4懸浮微粒對人體危害 22
第三章 實驗設備與方法 27
3-1懸浮微粒採樣 27
3-2熔煉流程表及現場採樣圖 28
3-3採樣時間及地點 32
3-4採樣方法及設備 38
3-4-1高流量採樣器 40
3-4-2個人式環境氣膠微粒採樣器(PEM) 45
3-4-3微孔均勻沉積衝擊器(MOUDI) 46
3-4-4重金屬分析 51
第四章 樣品之品保品管 53
第五章 結果與討論 59
5-1製程區及廠區周界總懸浮微粒表現之特性 59
5-1-1污染源及周界總懸浮微粒表現 61
5-1-2特殊除渣總懸浮微粒質量濃度 65
5-1-3製程區總懸浮微粒質量濃度佔比 67
5-2製程區及廠區周界PM2.5&PM10粉塵之特性 69
5-2-1污染源及周界PM2.5&PM10表現 71
5-2-2特殊除渣PM2.5&PM10質量濃度 74
5-2-3製程區PM2.5&PM10質量濃度佔比 75
5-2-4製程區與周界PM2.5&PM10及TSP佔比 77
5-3製程區及廠區周界粒徑分布之探討 79
5-3-1污染源粒徑質量濃度粒徑分布之表現 83
5-3-2廠區周界質量濃度粒徑分布 89
5-3-3特殊除渣質量濃度粒徑分布 93
5-4煉鋁廠重金屬化學組成 95
第六章 結論與建議 99
6-1結論 99
6-2建議 100
參考文獻 101
附件A:TSP濃度 107
附件B:PEM濃度 113
附件C:MOUDI濃度 119


Air Quality Criteria for Particulate Matter, National Air Pollution Control6- 2Administration, Pub. No. AP-49, 1969.
Akhter, M.S., Madany, I.M., 1992. Heavy metal sin street and house dust in Bahrain. Departement of Chemistry, University of Bahrain, P O. Box 32038, Bahrain; Arabian Gulf University, P O. Box 26671, Bahrain.
Almeida, S.M., Pio, C.A., Freitas, M.C., Reis, M.A., Trancoso, M.-A., 2006. Source apportionment of atmospheric urban aerosol based on weekdays/weekend variability: Evaluation of road re-suspended dust contribution. Atmospheric Environment 40, 2058-2067.
Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., Moreno, T., 2009. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmospheric Environment 43, 1650–1659.
Ball, J. E., Jenksb, R., Aubourgb, D., “An assessment of the availability of pollutant constituents on road surfaces” The Science of the Total Environment 209. 243-254, 1998.
Brook, R.D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., Luepker, R., Mittleman, M., Samet, J., Smith, S.C.J., Tager, I., 2004. Air pollution and cardiovascular disease: a statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. American Heart Association 109, 2655-2671.
Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S. L., Samet, J. M., Fine Particulate Air Pollution and Hospital Admission for Cardiovascular and Respiratory Diseases. JAMA 2006;295 (10) : 1127 - 1134, 2006.


Ho, K.-F., Lee, S.-C., Chow, J.-C., Watson, J.-G., 2003. Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. Atmospheric Environment 37, 1023-1032.
Hsieh, L.Y., Kuo, S.C., Chen, C.L., Tsai, Y. I., Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol. Atmospheric Environment 43, 4396-4406.
Hsu, S.-C., Liu, S.-C., Kao, S.-J., Jeng, W.-L., Huang, Y.-T., Tseng, C.-M., Tsai, F., Tu, J.-Y., Yang, Y., 2007. Water-soluble species in the marine aerosol from the northern south China Sea: High Chloride Depletion Related to Air Pollution. Journal of Geophysical Research: Atmospheres 112, D19304.
Jayant, N., Deshmukh, K. D., Deb, M. K., Tsai, Y. I., 2015. Khajornsak Sopajaree Mass loading and episodic variation of molecular markers in PM2.5 aerosols over a rural area in eastern central India. Atmospheric Environment 117, 41-50.
Kuoa, S.C., Hsiehb, L.Y., Tsaic, C.H., Tsai, Y.I., 2007. Characterization of PM2.5 fugitive metal in the workplaces andthe surrounding environment of a secondary aluminum smelter. Atmospheric Environment 41, 6884–6900
Kuo, C.-Y., Lin, C.-Y., Huang, L.-M., Wang, S., Shieh, P.-F., Lin, Y.-J., 2010. Spatial variations of the aerosols in river-dust episodes in central Taiwan. Journal of Hazardous Materials 179, 1022-1030.
Kameda, Y., Shirai, J., Komai, T., Nakanishi, J., Masunaga, S., Atmospheric polycyclic aromatic hydrocarbons: size distribution, estimation of their risk and their depositions to the human respiratory tract., Science of the Total Environment 340, pp.71-80, 2005.
Perera, F. P., Illmam, S. M., Kinney, P. L., Whyyatt, R. M., Kelvin, E. A., Shepard, P., Evans, D., Fullilove, M., Ford, J., Miller, R. L,.Meyer, I. H., Rauh, V. A., “The challenge of preventing environmentally related disease in young children: community-based research in New York City. Environmental Health Perspective.”110: 197– 204, 2002.
Seinfeld, J.-H., Pandis, S.-N., 1998. Atmospheric Chemistry and Physics: Form Air Pollution to Climate Change. Wiley, New York, 1326.
Tanimoto,T., Hirai,T., Goto,H., Matsuhashi,S., Tarui,Y.,”The Study of SuspendedParticulate Matter from the Stationary Pollution Source”, J. Jpn, Appl. Phys., 32,4078, 1993.
Tsai Y.I., Sopajaree, K., Kuo, S.C., Hsin, T.Y., 2015.Chemical Composition and Size-Fractionated Origins of Aerosols over a Remote Coastal Site in Southern Taiwan. Aerosol and Air Quality Research 15, 2549-2570.
Tsai, Y.I., Sopajaree, K., Kuo, S.C., Yu S.P., 2015. Potential PM2.5 impacts of festival-related burning and other inputs on air quality in an urban area of southern Taiwan. Science of the Total Environment 527-528, 65-79.
U.S. EPA, Particle Pollution and Your Health, EPA-452/F-03-001,2003.
Vanloon, J.C., Selected Methods of Trace Metal Analysis:Biological andEnvironmental Samples, John Wiely and Sons, Inc., 1985.
Whitby, K.T., Cantrell, B., 1976. Fine particles, in international conference on environmental sensing and assessment. Institute of Electric and Electronic Engineers. Las Veags, NV1-6.
Wei, B., Yang, L., 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal 94, 99-107.
尤嵩博,「市區秋季之大氣氣膠化學組成及粒徑分佈之特性研究」,嘉南藥理科技大學環境工程與科學系暨研究所碩士論文,2012。
台南市環境保護局,「細懸浮微粒與防制策略」TEDS 9.0,2013
田麒鈺,「微孔多階衝擊器的改良及微粒分徑特性的研究」,國立交通大學環境工程系所碩士論文,2014。


石東生、Smith T.J.、黃錦章、鄭蓉瑛、葉文裕、陳正堯,「台灣地區錳鋼及矽錳鋼製造工廠勞工錳暴露追追調查研究」,勞工安全衛生研究季刊,1997。
南投縣政府環境保護局,「民有民營街道揚塵洗掃計畫,理虹工程顧問股份有限公司」,2003。
行政院環保署,「空氣污染排放資料庫」,TEDS 8.1,2015。
李芝珊,「氣膠與健康」,環保科技資訊,1992。
宋國安,「都會地區粒狀物特性之研究」,臺灣大學環境工程研究所碩士論文,1980。
李俊佑,「郊區秋季之大氣氣膠無機鹽類及羧酸之特性及其粒徑變異研究」,嘉南藥理科技大學環境工程與科學系碩士論文,台南,2010。
李和穆,「街道、河砂、營建工地揚塵之粒徑分布及化學特性研究」,嘉南藥理大學環境工程與科學系碩士論文,台南,2019。
何俊傑、劉紹興,「奈米微粒作業人員健康危害流行病學研究」行政院勞工委員會勞工安全衛生研究所,2013。
辛亭誼,「恆春半島空曠大氣氣膠化學組成及粒徑分布特性研究」,嘉南藥理科技大學環境工程與科學系碩士論文,台南,2010。
林家和,「PM1/PM2.5/PM10氣懸微粒特性之探討」,國立臺灣大學環境衛生研究所碩士論文,臺北,2000。
林伯勳,「元宵節鹽水蜂炮節慶之大氣微粒分階濃度增量潛勢及其化學特性研究」,嘉南藥理大學環境工程與科學系碩士論文,台南,2019。
陳維新、江金龍,「空氣污染與控制」,高立圖書,2012。
陳友剛,「微量粉塵對健康之影響」,勞工安全衛生研究所,1995。
陳銘祥,「台中交通地區粗細微粒重金屬濃度與來源鑑定之研究」東海大學環境科學系碩士論文,2003。
袁中新、何嘉達、黃明和、陳威錦、吳岳侖,「環保署/國科會空污防制科研合作計畫」工業型都會區空氣污染物暴露評估研究─金屬工業粒狀空氣污染物暴露評估─(NSC92-EPA-Z-110-001),2003
蔡瀛逸,”大氣懸浮微粒中鉛元素之研究”,第九屆空氣污染控制技術研討會論文專輯,pp.245-256,1992。
蔡秀鈺,「街塵微粒中多環芳香烴化合物之特徵」,嘉南藥理科技大學環境工程與科學系暨研究所碩士論文,2015。
廖寶琦、李俊璋,「都市垃圾焚化爐周界空氣中多氯戴奧辛多與多氯夫喃之粒徑分佈研究」,成功大學環境醫學研究所碩士論文,2001。
樓基中、袁中新,「台灣地區懸浮微粒空氣污染問題及防治之研究」,行政院環保署研究報告,1995。
賴志誠,「洗街道路之街塵粒徑特徵與分佈特性」,嘉南藥理大學環境工程與科學系碩士論文,台南,2017。
鍾佑聰,「民俗節慶活動之環境氣膠化學組成及粒徑分佈之特性研究」,嘉南藥理科技大學環境工程與科學系暨研究所碩士論文,2011。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊