(44.192.112.123) 您好!臺灣時間:2021/03/01 02:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林偉琪
研究生(外文):LIN, WEI-CHI
論文名稱:設計合成可被葡萄醣醛酸酶活化之近紅外光探針應用於癌症診斷與治療
論文名稱(外文):Design and Synthesis β-Glucuronidase Based (off/on) Near-Infrared Probes for Anticancer Diagnosis and Therapy
指導教授:呂玉玲
指導教授(外文):LEU, YU-LIN
口試委員:鄭添祿孫懿真呂玉玲
口試委員(外文):CHENG, TAIN-LUSUN, I-CHENLEU, YU-LIN
口試日期:2020-07-20
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:藥學系
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:80
中文關鍵詞:葡萄醣醛酸酶近紅外光探針
外文關鍵詞:β-glucuronidasenear-infrared probe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在設計與合成可藉由β-葡萄醣醛酸酶(β-glucuronidase, βG)調控(off/on) 之近紅外光探針Glu-NIRoff-Quencher。其設計策略係將葡萄醣醛酸基通過一可自分解(self-immolative) 的芐基苯環中間棒,連接近紅外光發光基團和淬熄劑基團,使兩者之間有足夠近的距離,透過如π-相互作用、凡得瓦接觸…等形成分子內複合物,因為靜態和動態交互作用實現螢光猝熄。此探針,可被βG專一性水解,然後經由1, 6-脫去反應(1, 6-elimination reaction)釋放出螢光團或猝熄團,二者距離變大而交互作用消失,螢光恢復。可調控螢光探針Glu-NIRoff-Quencher具有背景低,專一性激活和非侵入性深層組織成像的優點,可以即時觀察某些腫瘤和腸道中βG的活性,將是加速癌症預防與治療的重要工具。通過相同的策略,我們也設計了Glu-NIRoff-Drug,是可藉βG調控的治療型探針。我們將喜樹鹼類化學治療藥物做為猝熄分子將近紅外光淬熄,因為是前驅藥,毒性較原形藥弱,經βG活化後毒性和螢光才恢復,達到同時殺死腫瘤細胞和顯影。Glu-NIRoff-Drug結合診斷和治療的功能,可以選擇性地靶向癌細胞,提供細胞毒性藥物,又同時在腫瘤組織中產生易於監測的成像信號,這有助於減少副作用和實時監測藥效的潛力,從而促進癌症個性化醫療的發展。
This study aims to design and synthesize a βG-based (off/on) near-infrared (NIR) probe, Glu-NIRoff-Quencher. In which glucuronic acid is connected via a self-immolative aromatic linker to NIR fluorophore and quencher. The control of intramolecular complex formation between fluorophore and quencher like π-interactions, van der Waals contact, etc., results in fluorescence quenching via both static and dynamic quenching. Upon hydrolyzed by βG specificity to liberate fluorophore or quencher through a 1, 6-elimination reaction, then restore the fluorescence. Fluorescence switchable Glu-NIRoff-Quencher probe has the advantages of low background, specific activation, and noninvasive deep-tissue imaging. It is a valuable tool for instantly visualizing βG activity in some tumors and intestinal to accelerate the development of personalized cancer treatment and prevention. By use of the same strategy, we design Glu-NIRoff-Drug as a βG-specific fluorescent theragnostic prodrug containing glucuronic acid, a chemotherapeutic drug, and NIR fluorophore along with an aromatic self-immolative linker. Chemotherapeutic drug plays the role of quenching and be released to kill tumor cells after activation. Therefore, Glu-NIRoff-Drug can target cancer cells selectively, offer a cytotoxic drug and produce readily monitored imaging signals in tumor tissues. It is foreseeable that combining specialized diagnosis and therapy would be the potential to enhanced anticancer efficacy, correct diagnosis and real-time monitoring for advancing the fields of personalized medicine.
目錄
中文摘要 I
英文摘要 II
致謝 III
目錄 IV
圖目錄 V
第一章 緒論 1
第二章 結果與討論 19
第一節 合成連接金奈米粒子的Glu-NIRoff-SH 19
第二節 合成探針Glu-NIRoff-Dabcyl 26
第三節 合成探針Glu-NIRoff-BQC 30
第三章 結論 34
第四章 實驗部分 37
第一節 儀器 37
第二節 試藥來源 38
第三節 合成方法 40
第五章 參考文獻 49
附件一、化合物光譜 55

圖目錄
圖 一、分子影像探針,體內顯示藥物治療靶點的分子改變 6
圖 二、螢光探針成像具高靈敏度、無損快速分析和實時檢測功能 6
圖 三、螢光分子探針“可激活(activatable)”或“可調控(off/on) 的概念” 7
圖 四、常見淬熄機制。PET和靜態淬熄需要螢光團和淬熄團碰觸 7
圖 五、依照不同螢光團選擇光譜重疊的暗淬熄團,經FRET淬熄 7
圖 六、偵測不同分析物的探針及其應用的淬熄原理 8
圖 七、分子內異(同)二聚體可調控探針的例子及淬熄策略 8
圖 八、酶受質螢光探針專一性活化的設計:(a )將螢光團分子接上可被酶識別的受質基團;(b)自消融中間棒連接識別基團和螢光團 12
圖 九、腫瘤細胞周圍有大量βG表現,可作為腫瘤標記設計前藥 12
圖 十、發展腸道βG抑制劑,減少βG抗癌前藥的代謝副作用 12
圖 十一、市面上有的β-葡萄醣醛酸酶活性檢測呈色劑和探針 14
圖 十二、FITC-TrapG和FITC-TrapG捕捉型探針的設計策略和結構 15
圖 十三、以FITC-TrapG偵測活體內腫瘤中β-葡萄醣醛酸酶的活性 15
圖 十四、以NIR-TrapG偵測活體內腫瘤中β-葡萄醣醛酸酶的活性 15
圖 十五、可調控βG近紅外光探針Glu-NIRoff-Quencher的策略和目標 18
圖 十六、可調控近紅外光治療型探針Glu-NIRoff-Drug的策略和目標 18
圖 十七、IR775、Dabcyl和化合物19在甲醇和水溶液中的吸收光譜 28

































第五章 參考文獻
1.Liu, H.-W.; Chen, L.; Xu, C.; Li, Z.; Zhang, H.; Zhang, X.-B.; Tan, W., Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chemical Society Reviews 2018, 47 (18), 7140-7180.
2.Weissleder, R.; Tung, C.-H.; Mahmood, U.; Bogdanov, A., In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnology 1999, 17 (4), 375-378.
3.Jenkins, R.; Burdette, M. K.; Foulger, S. H., Mini-review: fluorescence imaging in cancer cells using dye-doped nanoparticles. RSC Advances 2016, 6 (70), 65459-65474.
4.Lee, S.; Park, K.; Kim, K.; Choi, K.; Kwon, I. C., Activatable imaging probes with amplified fluorescent signals. Chem Commun (Camb) 2008, (36), 4250-60.
5.Elias, D. R.; Thorek, D. L. J.; Chen, A. K.; Czupryna, J.; Tsourkas, A., In vivo imaging of cancer biomarkers using activatable molecular probes. Cancer Biomarkers 2008, 4, 287-305.
6.J.R.Lackowitz, Principles of Fluorescence Spectroscopy. Third ed.; Springer Science: Boston, 2006.
7.de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E., Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews 1997, 97 (5), 1515-1566.
8.Hillisch, A.; Lorenz, M.; Diekmann, S., Recent advances in FRET: distance determination in protein-DNA complexes. Curr Opin Struct Biol 2001, 11 (2), 201-7.
9.Jares-Erijman, E. A.; Jovin, T. M., FRET imaging. Nature Biotechnology 2003, 21 (11), 1387-1395.
10.Miura, T.; Urano, Y.; Tanaka, K.; Nagano, T.; Ohkubo, K.; Fukuzumi, S., Rational Design Principle for Modulating Fluorescence Properties of Fluorescein-Based Probes by Photoinduced Electron Transfer. Journal of the American Chemical Society 2003, 125 (28), 8666-8671.
11.Doose, S.; Neuweiler, H.; Sauer, M., Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. Chemphyschem 2009, 10 (9-10), 1389-98.
12.de Silva, A. P.; Rupasinghe, R. A. D. D., A new class of fluorescent pH indicators based on photo-induced electron transfer. Journal of the Chemical Society, Chemical Communications 1985, (23), 1669-1670.
13.Urano, Y.; Asanuma, D.; Hama, Y.; Koyama, Y.; Barrett, T.; Kamiya, M.; Nagano, T.; Watanabe, T.; Hasegawa, A.; Choyke, P. L.; Kobayashi, H., Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat Med 2009, 15 (1), 104-9.
14.Hirano, T.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T., Highly Zinc-Selective Fluorescent Sensor Molecules Suitable for Biological Applications. Journal of the American Chemical Society 2000, 122 (49), 12399-12400.
15.Hirano, T.; Kikuchi, K.; Urano, Y.; Nagano, T., Improvement and Biological Applications of Fluorescent Probes for Zinc, ZnAFs. Journal of the American Chemical Society 2002, 124 (23), 6555-6562.
16.Kojima, H.; Nakatsubo, N.; Kikuchi, K.; Kawahara, S.; Kirino, Y.; Nagoshi, H.; Hirata, Y.; Nagano, T., Detection and Imaging of Nitric Oxide with Novel Fluorescent Indicators:  Diaminofluoresceins. Analytical Chemistry 1998, 70 (13), 2446-2453.
17.Sekar, R. B.; Periasamy, A., Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 2003, 160 (5), 629-33.
18.Johansson, M. K.; Cook, R. M., Intramolecular Dimers: A New Design Strategy for Fluorescence-Quenched Probes. Chemistry – A European Journal 2003, 9 (15), 3466-3471.
19.Yun, C. S.; Javier, A.; Jennings, T.; Fisher, M.; Hira, S.; Peterson, S.; Hopkins, B.; Reich, N. O.; Strouse, G. F., Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier. Journal of the American Chemical Society 2005, 127 (9), 3115-3119.
20.Wei, A.-P.; Blumenthal, D. K.; Herron, J. N., Antibody-Mediated Fluorescence Enhancement Based on Shifting the Intramolecular Dimer .dblarw. Monomer Equilibrium of Fluorescent Dyes. Analytical Chemistry 1994, 66 (9), 1500-1506.
21.Hama, Y.; Urano, Y.; Koyama, Y.; Kamiya, M.; Bernardo, M.; Paik, R. S.; Shin, I. S.; Paik, C. H.; Choyke, P. L.; Kobayashi, H., A Target Cell–Specific Activatable Fluorescence Probe for In vivo Molecular Imaging of Cancer Based on a Self-Quenched Avidin-Rhodamine Conjugate. Cancer Research 2007, 67 (6), 2791.
22.Tyagi, S.; Kramer, F. R., Molecular Beacons: Probes that Fluoresce upon Hybridization. Nature Biotechnology 1996, 14 (3), 303-308.
23.Tyagi, S.; Bratu, D. P.; Kramer, F. R., Multicolor molecular beacons for allele discrimination. Nature Biotechnology 1998, 16 (1), 49-53.
24.Pfaffl, M. W., A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29 (9), e45.
25.Marras, S. A. E.; Kramer, F. R.; Tyagi, S., Efficiencies of fluorescence resonance energy transfer and contact‐mediated quenching in oligonucleotide probes. Nucleic Acids Research 2002, 30 (21), e122-e122.
26.Wang, Q.; Cahill, S. M.; Blumenstein, M.; Lawrence, D. S., Self-Reporting Fluorescent Substrates of Protein Tyrosine Kinases. Journal of the American Chemical Society 2006, 128 (6), 1808-1809.
27.Frank, G. A.; Kipnis, Y.; Smolensky, E.; Daube, S. S.; Horovitz, A.; Haran, G., Design of an Optical Switch for Studying Conformational Dynamics in Individual Molecules of GroEL. Bioconjugate Chemistry 2008, 19 (7), 1339-1341.
28.Yang, H.; Luo, G.; Karnchanaphanurach, P.; Louie, T.-M.; Rech, I.; Cova, S.; Xun, L.; Xie, X. S., Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer. Science 2003, 302 (5643), 262.
29.Pham, W.; Weissleder, R.; Tung, C. H., An azulene dimer as a near-infrared quencher. Angew Chem Int Ed Engl 2002, 41 (19), 3659-62, 3519.
30.Pham, W.; Weissleder, R.; Tung, C.-H., A practical approach for the preparation of monofunctional azulenyl squaraine dye. Tetrahedron Letters 2003, 44 (20), 3975-3978.
31.Tung, C. H., Fluorescent peptide probes for in vivo diagnostic imaging. Peptide Science: Original Research on Biomolecules 2004, 76 (5), 391-403.
32.Hirano, T.; Akiyama, J.; Mori, S.; Kagechika, H., Modulation of intramolecular heterodimer-induced fluorescence quenching of tricarbocyanine dye for the development of fluorescent sensor. Organic & biomolecular chemistry 2010, 8 (24), 5568-5575.
33.Brot, F. E.; Bell, C. E.; Sly, W. S., Purification and properties of β-glucuronidase from human placenta. Biochemistry 1978, 17 (3), 385-391.
34.Gallagher, S. R., GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press: 2012.
35.Jefferson, R., The GUS reporter gene system. Nature 1989, 342 (6251), 837-838.
36.Carl, P. L.; Chakravarty, P. K.; Katzenellenbogen, J. A., A novel connector linkage applicable in prodrug design. Journal of Medicinal Chemistry 1981, 24 (5), 479-480.
37.Chen, L.; Li, J.; Du, L.; Li, M., Strategies in the Design of Small‐Molecule Fluorescent Probes for Peptidases. Medicinal research reviews 2014, 34 (6), 1217-1241.
38.Sperker, B.; Werner, U.; Mürdter, T. E.; Tekkaya, C.; Fritz, P.; Wacke, R.; Adam, U.; Gerken, M.; Drewelow, B.; Kroemer, H. K., Expression and function of β-glucuronidase in pancreatic cancer: potential role in drug targeting. Naunyn-Schmiedeberg's archives of pharmacology 2000, 362 (2), 110-115.
39.Juan, T.-Y.; Roffler, S. R.; Hou, H.-S.; Huang, S.-M.; Chen, K.-C.; Leu, Y.-L.; Prijovich, Z. M.; Yu, C.-P.; Wu, C.-C.; Sun, G.-H., Antiangiogenesis targeting tumor microenvironment synergizes glucuronide prodrug antitumor activity. Clinical Cancer Research 2009, 15 (14), 4600-4611.
40.Mürdter, T. E.; Friedel, G.; Backman, J. T.; McClellan, M.; Schick, M.; Gerken, M.; Bosslet, K.; Fritz, P.; Toomes, H.; Kroemer, H. K., Dose optimization of a doxorubicin prodrug (HMR 1826) in isolated perfused human lungs: low tumor pH promotes prodrug activation by β-glucuronidase. Journal of Pharmacology and Experimental Therapeutics 2002, 301 (1), 223-228.
41.Haisma, H.; Van Muijen, M.; Pinedo, H.; Boven, E., Comparison of two anthracycline-based prodrugs for activation by a monoclonal antibody-β-glucuronidase conjugate in the specific treatment of cancer. Cell biophysics 1994, 24 (1-3), 185-192.
42.Schmidt, F.; Monneret, C., Prodrug Mono Therapy: synthesis and biological evaluation of an etoposide glucuronide-prodrug. Bioorganic & medicinal chemistry 2003, 11 (10), 2277-2283.
43.Leu, Y.-L.; Roffler, S. R.; Chern, J.-W., Design and synthesis of water-soluble glucuronide derivatives of camptothecin for cancer prodrug monotherapy and antibody-directed enzyme prodrug therapy (ADEPT). Journal of medicinal chemistry 1999, 42 (18), 3623-3628.
44.Angenault, S.; Thirot, S.; Schmidt, F.; Monneret, C.; Pfeiffer, B.; Renard, P., Cancer chemotherapy: a SN-38 (7-ethyl-10-hydroxycamptothecin) glucuronide prodrug for treatment by a PMT (Prodrug MonoTherapy) strategy. Bioorganic & medicinal chemistry letters 2003, 13 (5), 947-950.
45.Bouvier, E.; Thirot, S.; Schmidt, F.; Monneret, C., First enzymatically activated Taxotere prodrugs designed for ADEPT and PMT. Bioorganic & medicinal chemistry 2004, 12 (5), 969-977.
46.Wang, S.-M.; Chern, J.-W.; Yeh, M.-Y.; Ng, J. C.; Tung, E.; Roffler, S. R., Specific activation of glucuronide prodrugs by antibody-targeted enzyme conjugates for cancer therapy. Cancer research 1992, 52 (16), 4484-4491.
47.Lougerstay-Madec, R.; Florent, J.; Monneret, C.; Nemati, F.; Poupon, M., Synthesis of self-immolative glucuronide-based prodrugs of a phenol mustard. Anti-cancer drug design 1998, 13 (8), 995-1007.
48.Graaf, M. d.; Boven, E.; Scheeren, H. W.; Haisma, H. J.; Pinedo, H. M., Beta-glucuronidase-mediated drug release. Current pharmaceutical design 2002, 8 (15), 1391-1403.
49.Chen, X.; Wu, B.; Wang, P., Glucuronides in anti-cancer therapy. Current Medicinal Chemistry-Anti-Cancer Agents 2003, 3 (2), 139-150.
50.Bosslet, K.; Straub, R.; Blumrich, M.; Czech, J.; Gerken, M.; Sperker, B.; Kroemer, H. K.; Gesson, J.-P.; Koch, M.; Monneret, C., Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer research 1998, 58 (6), 1195-1201.
51.Prijovich, Z.; Chen, B.; Leu, Y.; Chern, J.; Roffler, S., Anti-tumour activity and toxicity of the new prodrug9-aminocamptothecin glucuronide (9ACG) in mice. British journal of cancer 2002, 86 (10), 1634-1638.
52.Kim, D.-H.; Jin, Y.-H., Intestinal bacterial β-glucuronidase activity of patients with colon cancer. Archives of pharmacal research 2001, 24 (6), 564.
53.Humblot, C.; Murkovic, M.; Rigottier-Gois, L.; Bensaada, M.; Bouclet, A.; Andrieux, C.; Anba, J.; Rabot, S., β-glucuronidase in human intestinal microbiota is necessary for the colonic genotoxicity of the food-borne carcinogen 2-amino-3-methylimidazo [4, 5-f] quinoline in rats. Carcinogenesis 2007, 28 (11), 2419-2425.
54.Louis, P.; Hold, G. L.; Flint, H. J., The gut microbiota, bacterial metabolites and colorectal cancer. Nature reviews microbiology 2014, 12 (10), 661-672.
55.Manju, V.; Nalini, N., Protective role of luteolin in 1, 2‐dimethylhydrazine induced experimental colon carcinogenesis. Cell Biochemistry and Function: Cellular biochemistry and its modulation by active agents or disease 2007, 25 (2), 189-194.
56.Nalini, N.; Manju, V.; Menon, V. P., Effect of coconut cake on the bacterial enzyme activity in 1, 2-dimethyl hydrazine induced colon cancer. Clinica Chimica Acta 2004, 342 (1-2), 203-210.
57.Cheng, T.-C.; Chuang, K.-H.; Roffler, S. R.; Cheng, K.-W.; Leu, Y.-L.; Chuang, C.-H.; Huang, C.-C.; Kao, C.-H.; Hsieh, Y.-C.; Chang, L.-S., Discovery of specific inhibitors for intestinal E. coli β-glucuronidase through in silico virtual screening. The Scientific World Journal 2015, 2015.
58.Su, Y.; Chuang, K.; Wang, Y.-M.; Cheng, C.; Lin, S.; Wang, J.; Hwang, J.; Chen, B.; Chen, K.; Roffler, S., Gene expression imaging by enzymatic catalysis of a fluorescent probe via membrane-anchored β-glucuronidase. Gene therapy 2007, 14 (7), 565-574.
59.Cheng, T.-C.; Roffler, S. R.; Tzou, S.-C.; Chuang, K.-H.; Su, Y.-C.; Chuang, C.-H.; Kao, C.-H.; Chen, C.-S.; Harn, I.-H.; Liu, K.-Y., An activity-based near-infrared glucuronide trapping probe for imaging β-glucuronidase expression in deep tissues. Journal of the American Chemical Society 2012, 134 (6), 3103-3110.
60.Leu, Y.-L.; Chen, C.-S.; Wu, Y.-J.; Chern, J.-W., Benzyl ether-linked glucuronide derivative of 10-hydroxycamptothecin designed for selective camptothecin-based anticancer therapy. Journal of medicinal chemistry 2008, 51 (6), 1740-1746.
61.Jeong, E. H.; Jung, G.; Am Hong, C.; Lee, H., Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Archives of pharmacal research 2014, 37 (1), 53-59.
62.Lee, S.; Cha, E. J.; Park, K.; Lee, S. Y.; Hong, J. K.; Sun, I. C.; Kim, S. Y.; Choi, K.; Kwon, I. C.; Kim, K., A near‐infrared‐fluorescence‐quenched gold‐nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angewandte Chemie International Edition 2008, 47 (15), 2804-2807.
63.Wang, L.; Wei, Y., Fluorimetric analysis of camptothecin in Chinese herbal medicine common Camptotheca fruit. Yao xue xue bao= Acta pharmaceutica Sinica 2012, 47 (10), 1370-1374.
64.周華晟. 設計合成Benzo[de]quinoline camptothecin之葡萄糖醛酸衍生物 應用於癌症標靶治療. 嘉南藥理科技大學, 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔