|
第五章 參考文獻 1.Liu, H.-W.; Chen, L.; Xu, C.; Li, Z.; Zhang, H.; Zhang, X.-B.; Tan, W., Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chemical Society Reviews 2018, 47 (18), 7140-7180. 2.Weissleder, R.; Tung, C.-H.; Mahmood, U.; Bogdanov, A., In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnology 1999, 17 (4), 375-378. 3.Jenkins, R.; Burdette, M. K.; Foulger, S. H., Mini-review: fluorescence imaging in cancer cells using dye-doped nanoparticles. RSC Advances 2016, 6 (70), 65459-65474. 4.Lee, S.; Park, K.; Kim, K.; Choi, K.; Kwon, I. C., Activatable imaging probes with amplified fluorescent signals. Chem Commun (Camb) 2008, (36), 4250-60. 5.Elias, D. R.; Thorek, D. L. J.; Chen, A. K.; Czupryna, J.; Tsourkas, A., In vivo imaging of cancer biomarkers using activatable molecular probes. Cancer Biomarkers 2008, 4, 287-305. 6.J.R.Lackowitz, Principles of Fluorescence Spectroscopy. Third ed.; Springer Science: Boston, 2006. 7.de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E., Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews 1997, 97 (5), 1515-1566. 8.Hillisch, A.; Lorenz, M.; Diekmann, S., Recent advances in FRET: distance determination in protein-DNA complexes. Curr Opin Struct Biol 2001, 11 (2), 201-7. 9.Jares-Erijman, E. A.; Jovin, T. M., FRET imaging. Nature Biotechnology 2003, 21 (11), 1387-1395. 10.Miura, T.; Urano, Y.; Tanaka, K.; Nagano, T.; Ohkubo, K.; Fukuzumi, S., Rational Design Principle for Modulating Fluorescence Properties of Fluorescein-Based Probes by Photoinduced Electron Transfer. Journal of the American Chemical Society 2003, 125 (28), 8666-8671. 11.Doose, S.; Neuweiler, H.; Sauer, M., Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. Chemphyschem 2009, 10 (9-10), 1389-98. 12.de Silva, A. P.; Rupasinghe, R. A. D. D., A new class of fluorescent pH indicators based on photo-induced electron transfer. Journal of the Chemical Society, Chemical Communications 1985, (23), 1669-1670. 13.Urano, Y.; Asanuma, D.; Hama, Y.; Koyama, Y.; Barrett, T.; Kamiya, M.; Nagano, T.; Watanabe, T.; Hasegawa, A.; Choyke, P. L.; Kobayashi, H., Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat Med 2009, 15 (1), 104-9. 14.Hirano, T.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T., Highly Zinc-Selective Fluorescent Sensor Molecules Suitable for Biological Applications. Journal of the American Chemical Society 2000, 122 (49), 12399-12400. 15.Hirano, T.; Kikuchi, K.; Urano, Y.; Nagano, T., Improvement and Biological Applications of Fluorescent Probes for Zinc, ZnAFs. Journal of the American Chemical Society 2002, 124 (23), 6555-6562. 16.Kojima, H.; Nakatsubo, N.; Kikuchi, K.; Kawahara, S.; Kirino, Y.; Nagoshi, H.; Hirata, Y.; Nagano, T., Detection and Imaging of Nitric Oxide with Novel Fluorescent Indicators: Diaminofluoresceins. Analytical Chemistry 1998, 70 (13), 2446-2453. 17.Sekar, R. B.; Periasamy, A., Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 2003, 160 (5), 629-33. 18.Johansson, M. K.; Cook, R. M., Intramolecular Dimers: A New Design Strategy for Fluorescence-Quenched Probes. Chemistry – A European Journal 2003, 9 (15), 3466-3471. 19.Yun, C. S.; Javier, A.; Jennings, T.; Fisher, M.; Hira, S.; Peterson, S.; Hopkins, B.; Reich, N. O.; Strouse, G. F., Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier. Journal of the American Chemical Society 2005, 127 (9), 3115-3119. 20.Wei, A.-P.; Blumenthal, D. K.; Herron, J. N., Antibody-Mediated Fluorescence Enhancement Based on Shifting the Intramolecular Dimer .dblarw. Monomer Equilibrium of Fluorescent Dyes. Analytical Chemistry 1994, 66 (9), 1500-1506. 21.Hama, Y.; Urano, Y.; Koyama, Y.; Kamiya, M.; Bernardo, M.; Paik, R. S.; Shin, I. S.; Paik, C. H.; Choyke, P. L.; Kobayashi, H., A Target Cell–Specific Activatable Fluorescence Probe for In vivo Molecular Imaging of Cancer Based on a Self-Quenched Avidin-Rhodamine Conjugate. Cancer Research 2007, 67 (6), 2791. 22.Tyagi, S.; Kramer, F. R., Molecular Beacons: Probes that Fluoresce upon Hybridization. Nature Biotechnology 1996, 14 (3), 303-308. 23.Tyagi, S.; Bratu, D. P.; Kramer, F. R., Multicolor molecular beacons for allele discrimination. Nature Biotechnology 1998, 16 (1), 49-53. 24.Pfaffl, M. W., A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29 (9), e45. 25.Marras, S. A. E.; Kramer, F. R.; Tyagi, S., Efficiencies of fluorescence resonance energy transfer and contact‐mediated quenching in oligonucleotide probes. Nucleic Acids Research 2002, 30 (21), e122-e122. 26.Wang, Q.; Cahill, S. M.; Blumenstein, M.; Lawrence, D. S., Self-Reporting Fluorescent Substrates of Protein Tyrosine Kinases. Journal of the American Chemical Society 2006, 128 (6), 1808-1809. 27.Frank, G. A.; Kipnis, Y.; Smolensky, E.; Daube, S. S.; Horovitz, A.; Haran, G., Design of an Optical Switch for Studying Conformational Dynamics in Individual Molecules of GroEL. Bioconjugate Chemistry 2008, 19 (7), 1339-1341. 28.Yang, H.; Luo, G.; Karnchanaphanurach, P.; Louie, T.-M.; Rech, I.; Cova, S.; Xun, L.; Xie, X. S., Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer. Science 2003, 302 (5643), 262. 29.Pham, W.; Weissleder, R.; Tung, C. H., An azulene dimer as a near-infrared quencher. Angew Chem Int Ed Engl 2002, 41 (19), 3659-62, 3519. 30.Pham, W.; Weissleder, R.; Tung, C.-H., A practical approach for the preparation of monofunctional azulenyl squaraine dye. Tetrahedron Letters 2003, 44 (20), 3975-3978. 31.Tung, C. H., Fluorescent peptide probes for in vivo diagnostic imaging. Peptide Science: Original Research on Biomolecules 2004, 76 (5), 391-403. 32.Hirano, T.; Akiyama, J.; Mori, S.; Kagechika, H., Modulation of intramolecular heterodimer-induced fluorescence quenching of tricarbocyanine dye for the development of fluorescent sensor. Organic & biomolecular chemistry 2010, 8 (24), 5568-5575. 33.Brot, F. E.; Bell, C. E.; Sly, W. S., Purification and properties of β-glucuronidase from human placenta. Biochemistry 1978, 17 (3), 385-391. 34.Gallagher, S. R., GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press: 2012. 35.Jefferson, R., The GUS reporter gene system. Nature 1989, 342 (6251), 837-838. 36.Carl, P. L.; Chakravarty, P. K.; Katzenellenbogen, J. A., A novel connector linkage applicable in prodrug design. Journal of Medicinal Chemistry 1981, 24 (5), 479-480. 37.Chen, L.; Li, J.; Du, L.; Li, M., Strategies in the Design of Small‐Molecule Fluorescent Probes for Peptidases. Medicinal research reviews 2014, 34 (6), 1217-1241. 38.Sperker, B.; Werner, U.; Mürdter, T. E.; Tekkaya, C.; Fritz, P.; Wacke, R.; Adam, U.; Gerken, M.; Drewelow, B.; Kroemer, H. K., Expression and function of β-glucuronidase in pancreatic cancer: potential role in drug targeting. Naunyn-Schmiedeberg's archives of pharmacology 2000, 362 (2), 110-115. 39.Juan, T.-Y.; Roffler, S. R.; Hou, H.-S.; Huang, S.-M.; Chen, K.-C.; Leu, Y.-L.; Prijovich, Z. M.; Yu, C.-P.; Wu, C.-C.; Sun, G.-H., Antiangiogenesis targeting tumor microenvironment synergizes glucuronide prodrug antitumor activity. Clinical Cancer Research 2009, 15 (14), 4600-4611. 40.Mürdter, T. E.; Friedel, G.; Backman, J. T.; McClellan, M.; Schick, M.; Gerken, M.; Bosslet, K.; Fritz, P.; Toomes, H.; Kroemer, H. K., Dose optimization of a doxorubicin prodrug (HMR 1826) in isolated perfused human lungs: low tumor pH promotes prodrug activation by β-glucuronidase. Journal of Pharmacology and Experimental Therapeutics 2002, 301 (1), 223-228. 41.Haisma, H.; Van Muijen, M.; Pinedo, H.; Boven, E., Comparison of two anthracycline-based prodrugs for activation by a monoclonal antibody-β-glucuronidase conjugate in the specific treatment of cancer. Cell biophysics 1994, 24 (1-3), 185-192. 42.Schmidt, F.; Monneret, C., Prodrug Mono Therapy: synthesis and biological evaluation of an etoposide glucuronide-prodrug. Bioorganic & medicinal chemistry 2003, 11 (10), 2277-2283. 43.Leu, Y.-L.; Roffler, S. R.; Chern, J.-W., Design and synthesis of water-soluble glucuronide derivatives of camptothecin for cancer prodrug monotherapy and antibody-directed enzyme prodrug therapy (ADEPT). Journal of medicinal chemistry 1999, 42 (18), 3623-3628. 44.Angenault, S.; Thirot, S.; Schmidt, F.; Monneret, C.; Pfeiffer, B.; Renard, P., Cancer chemotherapy: a SN-38 (7-ethyl-10-hydroxycamptothecin) glucuronide prodrug for treatment by a PMT (Prodrug MonoTherapy) strategy. Bioorganic & medicinal chemistry letters 2003, 13 (5), 947-950. 45.Bouvier, E.; Thirot, S.; Schmidt, F.; Monneret, C., First enzymatically activated Taxotere prodrugs designed for ADEPT and PMT. Bioorganic & medicinal chemistry 2004, 12 (5), 969-977. 46.Wang, S.-M.; Chern, J.-W.; Yeh, M.-Y.; Ng, J. C.; Tung, E.; Roffler, S. R., Specific activation of glucuronide prodrugs by antibody-targeted enzyme conjugates for cancer therapy. Cancer research 1992, 52 (16), 4484-4491. 47.Lougerstay-Madec, R.; Florent, J.; Monneret, C.; Nemati, F.; Poupon, M., Synthesis of self-immolative glucuronide-based prodrugs of a phenol mustard. Anti-cancer drug design 1998, 13 (8), 995-1007. 48.Graaf, M. d.; Boven, E.; Scheeren, H. W.; Haisma, H. J.; Pinedo, H. M., Beta-glucuronidase-mediated drug release. Current pharmaceutical design 2002, 8 (15), 1391-1403. 49.Chen, X.; Wu, B.; Wang, P., Glucuronides in anti-cancer therapy. Current Medicinal Chemistry-Anti-Cancer Agents 2003, 3 (2), 139-150. 50.Bosslet, K.; Straub, R.; Blumrich, M.; Czech, J.; Gerken, M.; Sperker, B.; Kroemer, H. K.; Gesson, J.-P.; Koch, M.; Monneret, C., Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer research 1998, 58 (6), 1195-1201. 51.Prijovich, Z.; Chen, B.; Leu, Y.; Chern, J.; Roffler, S., Anti-tumour activity and toxicity of the new prodrug9-aminocamptothecin glucuronide (9ACG) in mice. British journal of cancer 2002, 86 (10), 1634-1638. 52.Kim, D.-H.; Jin, Y.-H., Intestinal bacterial β-glucuronidase activity of patients with colon cancer. Archives of pharmacal research 2001, 24 (6), 564. 53.Humblot, C.; Murkovic, M.; Rigottier-Gois, L.; Bensaada, M.; Bouclet, A.; Andrieux, C.; Anba, J.; Rabot, S., β-glucuronidase in human intestinal microbiota is necessary for the colonic genotoxicity of the food-borne carcinogen 2-amino-3-methylimidazo [4, 5-f] quinoline in rats. Carcinogenesis 2007, 28 (11), 2419-2425. 54.Louis, P.; Hold, G. L.; Flint, H. J., The gut microbiota, bacterial metabolites and colorectal cancer. Nature reviews microbiology 2014, 12 (10), 661-672. 55.Manju, V.; Nalini, N., Protective role of luteolin in 1, 2‐dimethylhydrazine induced experimental colon carcinogenesis. Cell Biochemistry and Function: Cellular biochemistry and its modulation by active agents or disease 2007, 25 (2), 189-194. 56.Nalini, N.; Manju, V.; Menon, V. P., Effect of coconut cake on the bacterial enzyme activity in 1, 2-dimethyl hydrazine induced colon cancer. Clinica Chimica Acta 2004, 342 (1-2), 203-210. 57.Cheng, T.-C.; Chuang, K.-H.; Roffler, S. R.; Cheng, K.-W.; Leu, Y.-L.; Chuang, C.-H.; Huang, C.-C.; Kao, C.-H.; Hsieh, Y.-C.; Chang, L.-S., Discovery of specific inhibitors for intestinal E. coli β-glucuronidase through in silico virtual screening. The Scientific World Journal 2015, 2015. 58.Su, Y.; Chuang, K.; Wang, Y.-M.; Cheng, C.; Lin, S.; Wang, J.; Hwang, J.; Chen, B.; Chen, K.; Roffler, S., Gene expression imaging by enzymatic catalysis of a fluorescent probe via membrane-anchored β-glucuronidase. Gene therapy 2007, 14 (7), 565-574. 59.Cheng, T.-C.; Roffler, S. R.; Tzou, S.-C.; Chuang, K.-H.; Su, Y.-C.; Chuang, C.-H.; Kao, C.-H.; Chen, C.-S.; Harn, I.-H.; Liu, K.-Y., An activity-based near-infrared glucuronide trapping probe for imaging β-glucuronidase expression in deep tissues. Journal of the American Chemical Society 2012, 134 (6), 3103-3110. 60.Leu, Y.-L.; Chen, C.-S.; Wu, Y.-J.; Chern, J.-W., Benzyl ether-linked glucuronide derivative of 10-hydroxycamptothecin designed for selective camptothecin-based anticancer therapy. Journal of medicinal chemistry 2008, 51 (6), 1740-1746. 61.Jeong, E. H.; Jung, G.; Am Hong, C.; Lee, H., Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Archives of pharmacal research 2014, 37 (1), 53-59. 62.Lee, S.; Cha, E. J.; Park, K.; Lee, S. Y.; Hong, J. K.; Sun, I. C.; Kim, S. Y.; Choi, K.; Kwon, I. C.; Kim, K., A near‐infrared‐fluorescence‐quenched gold‐nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angewandte Chemie International Edition 2008, 47 (15), 2804-2807. 63.Wang, L.; Wei, Y., Fluorimetric analysis of camptothecin in Chinese herbal medicine common Camptotheca fruit. Yao xue xue bao= Acta pharmaceutica Sinica 2012, 47 (10), 1370-1374. 64.周華晟. 設計合成Benzo[de]quinoline camptothecin之葡萄糖醛酸衍生物 應用於癌症標靶治療. 嘉南藥理科技大學, 2013.
|