中文部分
內政部不動產資訊平臺。低度使用(用電)住宅、新建餘屋(待售)住宅。取自https://pip.moi.gov.tw/V3/E/SCRE0104.aspx
內政部統計處。中華民國107年各縣市內政統計指標。取自https://www.moi.gov.tw/files/site_node_file/8714/107%e5%b9%b4%e5%90%84%e7%b8%a3%e5%b8%82%e5%85%a7%e6%94%bf%e7%b5%b1%e8%a8%88%e6%8c%87%e6%a8%99.pdf.
內政部統計處。107年第9週內政統計通報。取自https://www.moi.gov.tw/chi/chi_site/stat/news_detail.aspx?sn=13553
內政部警政署內政資料開放平臺。犯罪資料統計數據。取自https://data.moi.gov.tw/MoiOD/Data/DataDetail.aspx?oid=6D9C7F00-3E4C-4FC7-BEDB-28D70FF96FEE
內政部警政署全球資訊網。警政統計年報電子書(2015年-2018年)。取自https://www.npa.gov.tw/NPAGip/wSite/lp?ctNode=12898&CtUnit=2662&BaseDSD=7&mp=1
內政部警政署全球資訊網。警政統計名詞定義。取自https://www.npa.gov.tw/NPAGip/wSite/lp?ctNode=12599&xq_xCat=02&nowPage=3&pagesize=15
王占宏 (2013)。基於掃描統計方法的上海犯罪時空熱點分析 (未出版博士論文)。 華東師範大學,上海市。
王保進 (2006)。英文視窗版SPSS與行為科學研究(第三版)。臺北市:心理出版社。
王翔正 (2014)。侵入住宅竊盜被害影響因素及被害後反應之研究 (未出版碩士論文)。中央警察大學,桃園縣。王麗雲 (2005)。理論在量化研究中的地位。教育資料與研究雙月刊,64,139-148。
朱家嶠 (2017)。「與研究相關之倫理定義」。臺灣學術倫理教育推廣資源中心。取自:https://ethics.moe.edu.tw/files/demo/demo_u01/p02.html
朱群芳 (2015)。臺灣社會中的犯罪控制:比較社區中的社會連結與集體效能之效應。取自file:///D:/endnote%20library/E10249r.pdf
江羿臻、林正昌 (2014)。應用決策樹探討中學生學習成就的相關因素。教育心理學報,45(3),303-327。
江振亨 (2002)。犯罪是理性選擇?-理性選擇理論的實証與面臨之挑戰。犯罪學會會訊,3(4),13-19。
行政院主計總處(2018)。國情統計通報 (第一40號)。取自https://www.stat.gov.tw/public/Data/87261643BYSDYTB1.pdf
何宗武 (2016)。R資料採礦與數據分析—以GUI套件Rattle結合程式語言實作。臺北市:碁峰資訊公司。
余任晴 (2019)。從社會解組與機會觀點看住宅竊盜的發生:集體效能的作用 (未出版碩士論文)。國立臺北大學:新北市。余致廷 (2014)。運用地理資訊系統與資料探勘技術於基層診所選址分析與研究─以臺北市為例(未出版碩士論文)。國立中央大學,桃園縣。李良益(2014)。臺灣地區犯罪趨勢之研究—時間數列模型之應用(未出版碩士論文)。國立臺北大學,新北市。李波 (2011)。論多層面犯罪理論整合模型。犯罪研究,4,24-31。
李珀宗 (2005)。社區犯罪基圖在警察機關防制住宅竊盜犯罪之應用—以臺北市松山區為例 (未出版碩士論文)。中央警察大學,桃園縣。周孟嫻、紀玉臨、謝雨生 (2010)。臺灣自殺率具空間群聚嗎?模仿效應或結構效應。人口學刊,41,1-65。
周愫嫻 (2017)。全球犯罪率為何同步下降。刑事政策與犯罪研究論文集,20,1-13。
周愫嫻、曹立群(2007)。犯罪學理論及其實證.。臺北:五南書局。
周德芳 (2016)。基隆市住宅竊盜犯罪空間與區位分析 (未出版碩士論文)。國立臺北大學,新北市。孟維德 (2001)。犯罪熱點的實證分析—警察局勤務指揮中心報案紀錄的分析與運用。犯罪學期刊,8,27-63。
林宛宣 (2019)。應用資料探勘於臺北市住宅竊盜環境特性之關聯研究 (未出版碩士論文)。國立臺灣科技大學,臺北市。林宜甲、黃柏霖(2017)。利用空間性局部指標(LISA)分析高雄市 C-Bike 站點與空間相關性初探,經營管理學刊,12,125-141。
林建隆 (2010)。刑案隱性鏈結關聯模式之研究—以臺北市搶奪與住宅竊盜案為例 (未出版碩士論文)。中央警察大學,桃園縣。林進發 (2005)。臺中市搶奪犯罪熱點之空間分析(未出版碩士論文)。國立彰化師範大學,彰化縣。林維真 (2017)。以時間與空間觀點探討住宅竊盜的發生 (未出版碩士論文)。國立清華大學,新竹市。邱奕堯 (2013)。臺北市犯罪現象之時空分析(未出版碩士論文)。國立臺灣大學,臺北市。邱靖方 (2008)。臺灣地區家戶特性與區域特性對於住宅竊盜被害風險之影響 (未出版碩士論文)。國立臺北大學,新北市。邱豐光 (2008)。常業住宅竊盜犯罪歷程之研究 (未出版碩士論文)。國立臺北大學,新北市。洪百亮 (2009)。常業住宅竊盜犯犯罪標的空間搜尋模式之研究(未出版碩士論文)。國立臺北大學,新北市。唐建波、鄧敏、劉啟亮 (2013)。時空事件聚類分析方法研究。地理信息世界,20(1),38-45。
徐晨剛(2017)。應用資料探勘技術建構竊盜犯罪預測模型(未出版碩士論文)。中央警察大學,桃園市。殷菲、李曉松、馮子建、馬家奇(2007)。前瞻性時空掃描統計量在傳染病早期預警中的應用。中華預防醫學雜誌,41(增刊),155-158。
翁培文、蔡博文 (2006)。空間離散指標:舊觀念、新公式。台灣地理資訊學刊,4,1-12。
翁慈宗(2009)。資料探勘的發展與挑戰。科學發展,442,,32-39。
袁帥(2017年2月4日)。壹讀。從5大行業領域看大數據場景應用當前進展。取自website: https://kknews.cc/zh-tw/tech/v94qaky.html
張平吾、黃富源(2012)。被害者學新論。桃園縣:臺灣警察學會。
張平吾、蔡德輝 (2005)。住宅竊盜重複被害特性與防制策略之研究。政府研究資訊系統(計畫系統編號PG9403-0341)。取自https://www.grb.gov.tw/search/planDetail?id=1071473&docId=203159
張淑貞(2008)。街頭搶奪犯罪之空間與時間群聚性研究—以臺中市西屯區為例(未出版博士論文), 逢甲大學,臺中市。張淑貞、李素馨(2012)。都市街頭搶奪犯罪熱點分析:日常活動理論之觀點。都市與計劃,39(1),71-94。
張瑋倫 (2016)。科技橘報。犯罪能精準被預測?洛杉磯警局用大數據分析降低 36%犯罪率。取自https://buzzorange.com/techorange/2016/09/21/use-data-analysis-predict-crime/
曹立群、周素嫻 (2007)。犯罪學理論及其實證。臺北市: 五南圖書出版股份有限公司。
許春金 (2009)。人本犯罪學(增訂二版)。臺北市:三民書局。
許春金 (2010)。犯罪學(修訂五版)。臺北市:三民書局。
許春金、陳玉書、蔡田木、洪千涵、白鎮福 (2015)。102年犯罪狀況及其研析。刑事政策與犯罪研究論文集, 18,1-31。
許華孚、吳吉裕(2015)。大數據發展趨勢以及在犯罪防治領域之應用。刑事政策與犯罪研究論文集,18,341-375。
許福生 (2007)。刑事政策學(修訂二版)。臺北市:元照出版公司。
郭耀仁 (2018)。DataInPoint。輕鬆學習 R 語言:起步走。取自https://medium.com/datainpoint/r-essentials-quick-start-8226b33514f9
陳陸毅 (2008)。臺中市住宅竊盜空間分布之研究 (未出版碩士論文)。逢甲大學都市計畫所,臺中市。陳惠貞 (2008)。高雄市住宅竊盜犯罪地圖繪製與時空分析(未出版碩士論文)。國立高雄師範大學,高雄市。陳瑞基 (2010)。連續住宅竊盜犯作案手法與空間行為模式剖析(未出版博士論文)。 中央警察大學,桃園縣。陳榮昌、林育臣(2003)。群聚演算法及群聚參數的分析與探討。朝陽學報,8(1),327-353。
陳薇琳(2012)。臺灣登革熱疫情之時空群集研究 (未出版碩士論文)。國立陽明大學,臺北市。黄文、王正林 (2016)。利用R語言打通大數據的經脈。臺北:佳魁資訊。
傅鈺婷 (2018)。臺灣的毒品犯罪趨勢分析-時間序列模型之應用(未出版碩士論文),國立臺北大學,新北市。彭福康(2015)。監視錄影系統與竊盜犯罪率之時空分析 (未出版碩士論文)。中央警察大學,桃園市。棗厥庸、李永新 (2010)。公司危機預測:計量模型與變數選取。期貨與選擇權學刊, 3(1),1-26。
游士嫺 (2010)。罪惡不能侵擾之蒂:臺灣低犯罪率鄉鎮市區影響因素之研究 (未出版碩士論文)。國立臺北大學,新北市。游柏輝 (2011)。以時空加權迴歸模型探索地域犯罪機制的時空變異性(未出版碩士論文)。國立臺灣大學,臺北市。湯巧君 (2007)。利用犯罪地圖分析臺中市2005年搶奪案之時空差異(未出版碩士論文)。國立高雄師範大學,高雄市。程路文 (2017)。基於集成學習的空污與呼吸系統疾病發病預測模型(未出版碩士論文)。元智大學,桃園縣。黃元杰 (2017)。犯罪地圖政策公佈對房價之探討—以臺北市為例(未出版碩士論文)。國立臺灣大學,臺北市。黃月盈 (2013)。臺灣景氣指標季節調整方法之研析。經濟研究,14,1-37。
黃俊能 (2008)。從國外經驗談犯罪製圖與犯罪防治。取自網址:http://cnhuang.cpu.edu.tw/html/gis/files/971117.pdf
黃信誠 (2000)。空間統計簡介。自然科學簡訊,12(3),,101-104。
黃映翎 (2008)。臺北市士林區指標型犯罪空間分 (未出版碩士論文)。東吳大學, 臺北市。黃瀰嬗 (2010)。社區犯罪基圖對於警察派出所預防住宅竊盜犯罪之研究—以臺北市中正第一分局為例(未出版碩士論文)。華梵大學,新北市。楊武德 (2006)。住宅竊盜被害特性、影響及反應之研究 (未出版碩士論文)。中央警察大學,桃園縣。溫在弘 (2015)。空間分析方法與應用。臺北市:雙葉書廊。
溫在弘、劉擇昌、林民浩 (2010)。犯罪地圖繪製與熱區分析方法及其應用:以1998—2007年臺北市住宅竊盜犯罪為例。地理研究,52,43-63。
葉柏村、張光宗 (2019)。山崩潛感模型的逐步建構與決策分析—以陳有蘭集水區為例。中華水土保持學報, 50(2),49-62。
葉茗宏 (2013)。身心障礙人力資源需求之空間異質性因素探討-以雙北地區為例 (未出版碩士論文)。國立臺北大學,新北市。董倩楠 (2016)。基於 Kulldorff 掃描統計量的聚類方法研究及應用(未出版碩士論文)。中國石油大學,山東省。
廖興中、徐明莉 (2017)。臺灣地方政府貪腐現象之時空掃描。公共行政學報,53, 1-23。
榮峻德、孫志鴻、李萬凱 (2005)。普查資料之空間資料挖掘研究—以臺北市便利商店區位分析為例。台灣地理資訊學刊,2,45-56。
臺大新聞E論壇 (2017)。「路燈可以降低犯罪率?資料顯示兩者關聯不大」。取自網址: https://castnet.nctu.edu.tw/ntuereporting/article/12194?issueID=674
臺北市政府地政局 (2012)。「不動產實價登錄101年8月1日上路」。取自網址: https://land.gov.taipei/News_Content.aspx?n=0ABE9F8A3E5B75C2&sms=72544237BBE4C5F6&s=5641CBBD75AF0755
劉孟奇、張其祿、盧敬植 (2000)。警力增加能導致竊盜犯罪率降低嗎?公共行政學報,34,1-27。
劉盈君 (2008)。大專院校學生死亡交通事故類型與影響因子分析之研究 (未出版碩士論文)。國立交通大學,新竹市。
劉擇昌 (2011)。住宅竊盜犯罪熱區空間分析與環境特性之研究--以臺北市大安區為例(未出版博士論文)。中央警察大學,桃園縣。劉擇昌 (2013)。臺灣地區都市化因子對竊盜犯罪影響及其區域變異:全域性與區域性迴歸分析。犯罪與刑事司法研究,21,135-174。
劉擇昌、張平吾 (2014)。地理資訊系統與執法。臺北市:三民書局。
劉擇昌、鄧煌發、張智雄 (2013)。臺北市大安區住宅竊盜犯罪環境差異之實證研究。犯罪與刑事司法研究,20,61-104。
蔡丞庭 (2011)。焦點檢定方法比較(未出版碩士論文)。國立政治大學,臺北市。蔡德輝、楊士隆 (2012)。犯罪學。臺北:五南圖書公司。
蔡德輝、楊士隆 (2019)。犯罪學(增訂八版)。臺北: 五南圖書公司。
鄧莉雅 (2015)。決策樹分析與羅吉斯迴歸於資料探勘的整合運用:以人事資料與民眾健康影響因素之探討為例(未出版碩士論文)。 國立臺灣師範大學, 臺北市。賴致瑜 (2006)。臺北市住宅竊盜犯罪地圖製作與犯罪區位分析 (未出版碩士論文)。國立臺灣大學,臺北市。謝漢欽、汪大雄、鍾智昕 (2010)。談空間資料倉儲及資料探勘的觀念與技術。林業研究專訊,17(2),61-68。
鍾孝宇 (2017)。巨量資料與隱私權—個人資料保護機制的再思考(未出版碩士論文)。國立政治大學,臺北市。鍾志偉 (2010)。以地理資訊系統結合資料探勘技術從事郵局設點分析(未出版碩士論文)。國立政治大學,臺北市。外文部分
Aamodt, G., Samuelsen, S. O., & Skrondal, A. (2006). A simulation study of three methods for detecting disease clusters. International Journal of Health Geographics, 5(1), 15. doi:10.1186/1476-072X-5-15
Akers, R. L., & Sellers, C. S. (2013). Criminological Theories: Introduction, Evaluation, and Application: Oxford University Press.
Alm, S. E. (1997). On the Distributions of Scan Statistics of a Two-Dimensional Poisson Process. Advances in Applied Probability, 29(1), 1-18. doi:10.2307/1427857
Alm, S. E. (1998). Approximation and Simulation of the Distributions of Scan Statistics for Poisson Processes in Higher Dimensions. Extremes, 1(1), 111-126. doi:10.1023/a:1009965918058
Andresen, M. A. (2006). A spatial analysis of crime in Vancouver, British Columbia: a synthesis of social disorganization and routine activity theory. Canadian Geographer-Geographe Canadien, 50 (4),487-502.
Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2), 93-115.
Awal, M. A., Rabbi, J., & Rana, I. (2017). Using Data Mining Technique to Analyze Crime of Bangladesh. 6(4), 489-494.
Baker, R. D. (1996). Testing for space-time clusters of unknown size. Journal of Applied Statistics, 23(5), 543-554.
Bellamy, L. C. (1996). Situational crime prevention and convenience store robbery. Security Journal, 7(1), 41-52.
Benefiel, R. (2014, 01/22). Theoretical Integration. Encyclopedia of Criminology and Criminal Justice. Retrieved from https://www.researchgate.net/publication/282778316_Theoretical_Integration
Bernasco, W., & Nieuwbeerta, P. (2005). How Do Residential Burglars Select Target Areas? A New Approach to the Analysis of Criminal Location Choice. British Journal of Criminology, 45, 296 - 315 (2005), 45. doi:10.1093/bjc/azh070
Besag, J., & Newell, J. (1991). The detection of clusters in rare diseases. Journal of the Royal Statistical Society, Series A, 154(pt1), 143-155.
Besag, J., & Newell, J. (1991). The Detection of Clusters in Rare Diseases. Journal of the Royal Statistical Society. Series A (Statistics in Society), 154(1), 143-155. doi:10.2307/2982708
Bhunia, G. S., & Shit, P. K. (2019). Geospatial Analysis of Public Health. Cham, Switzerland: Springer.
Braithwaite, J. (1989). Crime, Shame and Reintegration. Cambridge: Cambridge University Press.
Brantingham, P. J., & Brantingham, P. L. (1991). Environmental Criminology: Waveland Press.
Breiman, L. (2001). randomforest. Machine learning, 45(1), 5-32.
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and Regression Trees: Taylor & Francis.
Burgess, R. E. P. E. W., Park, R. E., Burgess, E. W., Janowitz, M., McKenzie, R. D., & McKenzie, R. D. (1967). The City: University of Chicago Press.
Bursik, R. J., & Webb, J. (1982). Community change and patterns of delinquency. American Journal of Sociology, 88(1), 24-42. doi:10.1086/227632
Capowich, G. E. (2003). The Conditioning Effects Of Neighborhood Ecology On Burglary Victimization. Criminal Justice and Behavior, 30(1), 39-61. doi:10.1177/0093854802239162
Ceccato, V., Haining, R., & Signoretta, P. (2002). Exploring Offence Statistics in Stockholm City Using Spatial Analysis Tools. Annals of the Association of American Geographers, 92(1), 29-51. doi:10.1111/1467-8306.00278
Chawla, S., Shekhar, S., Wu, W. L., & Ozesmi, U. (2000). Extending Data Mining for Spatial Applications: A Case Study in Predicting Nest Locations. In S. Minnesota Univ Minneapolis Minneapolis United (Ed.).
Chen, J., Roth, R. E., Naito, A. T., Lengerich, E. J., & Maceachren, A. M. (2008). Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of U.S. cervical cancer mortality. Int J Health Geogr, 7, 57. doi:10.1186/1476-072X-7-57
Chen, P., Yuan, H., & Li, D. (2013). Space-time analysis of burglary in Beijing. Security Journal, 26(1), 1-15. doi:10.1057/sj.2011.4
Cheng, T., & Adepeju, M. (2013). Detecting emerging space-time crime patterns by prospective STSS. Paper presented at the In Proceedings ofthe 12th International Conference on GeoComputation.
Clarke, R. V., & Cornish, D. B. (1985). Modeling Offenders' Decisions: A Framework for Research and Policy. Crime and Justice, 6, 147-185.
Clarke, R. V., & Eck, J. E. (2005). Crime Analysis for Problem Solvers in 60 Small Steps. Retrieved from https://www.semanticscholar.org/paper/Crime-Analysis-for-Problem-Solvers-in-60-Small-Clarke-Eck/be59dec7e23070bf8857745e737d9f4c90aeff5e
Clarke, R. V. G., & Eck, J. (2003). Become a problem-solving crime analyst: in 55 small steps. London: Jill Dando Institute of Crime Science.
Cohen, L. E., Felson, M., & Land, K. C. (1980). Property Crime Rates in the United States: A Macrodynamic Analysis, 1947-1977; With Ex Ante Forecasts for the Mid-1980s. American Journal of Sociology, 86(1), 90-118. doi:10.1086/227204
Cohen, L. E., Kluegel, J. R., & Land, K. C. (1981). Social Inequality and Predatory Criminal Victimization: An Exposition and Test of a Formal Theory. American Sociological Review, 46(5), 505-524. doi:10.2307/2094935
Coulston, J., & Riitters, K. (2003). Geographic Analysis of Forest Health Indicators Using Spatial Scan Statistics. Environmental Management, 31(6), 764-773. doi:10.1007/s00267-002-0023-9
Cressie, N. A. C. (1993). Statistics for spatial data (Rev. ed. ed.). New York: John Wiley.
DeChello, L. M., & Sheehan, T. J. (2007). Spatial analysis of colorectal cancer incidence and proportion of late-stage in Massachusetts residents: 1995-1998. International Journal of Health Geographics, 6, 20-20. doi:10.1186/1476-072X-6-20
E. Cohen, L., & Felson, M. (1979). Social Change and Crime Rate Trends: A Routine Activity Approach (Vol. 44).
Eck, J. E., Chainey, S., Cameron, J. G., Leitner, M., & Wilson, R. E. (2005). Mapping Crime:Understanding Hot Spots.
Eckley, D. C., & Curtin, K. M. (2013). Evaluating the spatiotemporal clustering of traffic incidents. Computers, Environment and Urban Systems, 37, 70-81.
Ester, M., Kriegel, H.-P., & Sander, J. (1997, 1997//). Spatial data mining: A database approach. Paper presented at the Advances in Spatial Databases, Berlin, Heidelberg.
Fawcett, T. (2006). Introduction to ROC analysis. Pattern Recognition Letters, 27, 861-874. doi:10.1016/j.patrec.2005.10.010
Felson, M., Clarke, R. V. G., Great Britain. Home Office. Research, D., Policing, S. D., & Unit, R. C. (1998). Opportunity makes the thief: practical theory for crime prevention: Home Office, Policing and Reducing Crime Unit, Research, Development and Statistics Directorate.
Felson, M., & Poulsen, E. (2003). Simple Indicators of Crime by Time of Day. International Journal of Forecasting, 19, 595-601. doi:10.1016/S0169-2070(03)00093-1
Gao, P., Guo, D., Liao, K., Webb, J. J., & Cutter, S. L. (2013). Early detection of terrorism outbreaks using prospective space–time scan statistics. The Professional Geographer, 65(4), 676-691.
Gilbertson, D. L. (2007). Book Review: Lersch, K. M. (2004). Space, Time, and Crime. Durham, NC: Carolina Academic Press, pp. 282. Criminal Justice Review, 32(4), 432-434. doi:10.1177/0734016807310632
Goldstein, H. (1979). Improving Policing: A Problem-Oriented Approach. Crime & Delinquency, 25(2), 236-258. doi:10.1177/001112877902500207
Grubesic, T. H., & Mack, E. A. (2008). Spatio-Temporal Interaction of Urban Crime. Journal of Quantitative Criminology, 24(3), 285-306. doi:10.1007/s10940-008-9047-5
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2013). Multivariate Data Analysis: Pearson Education Limited.
Hambaba, M. L. (1996, 24-26 March 1996). Intelligent hybrid system for data mining. Paper presented at the IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr).
Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques: Morgan Kaufmann Publishers Inc.
Han, J., Zhu, L., Kulldorff, M., Hostovich, S., Stinchcomb, D. G., Tatalovich, Z., . . . Feuer, E. J. (2016). Using Gini coefficient to determining optimal cluster reporting sizes for spatial scan statistics. International Journal of Health Geographics, 15(1), 27-27. doi:10.1186/s12942-016-0056-6
Harcourt, B. E., & Ludwig, J. (2006). Broken Windows: New Evidence from New York City and a Five-City Social Experiment. The University of Chicago Law Review, 73(1), 271-320.
Hino, K., & Amemiya, M. (2019). Spatiotemporal analysis of burglary in multifamily housing in Fukuoka City, Japan. Cities, 90, 15-23. doi:https://doi.org/10.1016/j.cities.2019.01.030
Hirschi, T. (1979). Separate and Unequal Is Better. Journal of Research in Crime and Delinquency, 16(1), 34-38. doi:10.1177/002242787901600104
Hoppe, L., & Gerell, M. (2019). Near-repeat burglary patterns in Malmö: Stability and change over time. European Journal of Criminology, 16(1), 3-17. doi:10.1177/1477370817751382
Hosmer, D. W., Lemeshow, S., & Cook, E. D. (2001). Applied Logistic Regression, Second Edition: Book and Solutions Manual Set: Wiley.
Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical statistics, 15(3), 651-674.
Jefferis, E. (1998). A multi-method exploration of crime hot spots: SaTScan results. National Institute of Justice, Crime Mapping Research Center.
Jeffery, C. Ray. (1971). Crime Prevention Through Environmental Design. Beverly Hills, CA: Sage Publications.
Johnson, S. D., Bernasco, W., Bowers, K. J., Elffers, H., Ratcliffe, J., Rengert, G., & Townsley, M. (2007). Space–Time Patterns of Risk: A Cross National Assessment of Residential Burglary Victimization. Journal of Quantitative Criminology, 23(3), 201-219. doi:10.1007/s10940-007-9025-3
Johnson, S. D., Bowers, K., & Hirschfield, A. (1997). New Insights Into the Sparial and Temporal Distribution of Repeat Victimzation. The British Journal of Criminology, 37(2), 224-241.
Johnson, S. D., & Bowers, K. J. (2010). Permeability and Burglary Risk: Are Cul-de-Sacs Safer? Journal of Quantitative Criminology, 26(1), 89-111. doi:10.1007/s10940-009-9084-8
Johnson, S. D., Bowers, K. J., Birks, D. J., & Pease, K. (2009). Predictive Mapping of Crime by ProMap: Accuracy, Units of Analysis, and the Environmental Backcloth. In D. Weisburd, W. Bernasco, & G. J. N. Bruinsma (Eds.), Putting Crime in its Place: Units of Analysis in Geographic Criminology (pp. 171-198). New York, NY: Springer New York.
Kennedy, L. W., Caplan, J. M., & Piza, E. (2011). Risk Clusters, Hotspots, and Spatial Intelligence: Risk Terrain Modeling as an Algorithm for Police Resource Allocation Strategies. Journal of Quantitative Criminology, 27(3), 339-362. doi:10.1007/s10940-010-9126-2
Klauber, M. R. (1971). Two-sample randomization tests for space-time clustering. Biometrics, 129-142.
Knox, G. (1964). Epidemiology of Childhood Leukaemiain Northumberland and Durham. British journal of preventive & social medicine, 18(1), 17-24.
Kornhauser, R. R. (1984). Social Sources of Delinquency: An Appraisal of Analytic Models: University of Chicago Press.
Kubrin, C. (2009). Social Disorganization Theory: Then, Now, and in the Future. In (pp. 225-236).
Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics - Theory and Methods, 26(6), 1481-1496. doi:10.1080/03610929708831995
Kulldorff, M. (1998). Statistical Methods for Spatial Epidemiology: Tests for Randomness.
Kulldorff, M. (1999). Spatial Scan Statistics: Models, Calculations, and Applications. In J. Glaz & N. Balakrishnan (Eds.), Scan Statistics and Applications (pp. 303-322). Boston, MA: Birkhäuser Boston.
Kulldorff, M. (2001). Prospective Time Periodic Geographical Disease Surveillance Using A Scan Statistic. Journal of the Royal Statistical Society Series A, 164, 61-72. doi:10.1111/1467-985X.00186
Kulldorff, M. (2006). Tests of Spatial Randomness Adjusted for an Inhomogeneity: A General Framework. Journal of the American Statistical Association, 101, 1289-1305. doi:10.2307/27590802
Kulldorff, M. (2018). SaTScan User Guide TM for version 9.6. Retrieved from http://www.satscan.org/
Kulldorff, M., Athas, W. F., Feurer, E. J., Miller, B. A., & Key, C. R. (1998). Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. Am J Public Health, 88(9), 1377-1380.
Kulldorff, M., Feuer, E. J., Miller, B. A., & Freedman, L. S. (1997). Breast Cancer Clusters in the Northeast United States: A Geographic Analysis. American Journal of Epidemiology, 146(2), 161-169.
Kulldorff, M., Heffernan, R., Hartman, J., Assuncao, R., & Mostashari, F. (2005). A space-time permutation scan statistic for disease outbreak detection. PLoS Med, 2(3), e59. doi:10.1371/journal.pmed.0020059
Kulldorff, M., Huang, L., Pickle, L., & Duczmal, L. (2006). An elliptic spatial scan statistic. Stat Med, 25(22), 3929-3943. doi:10.1002/sim.2490
Kuo, S.-Y. (2014). Opportunity, Choice, and Burglary Victimization in Taiwan. International journal of offender therapy and comparative criminology, 59. doi:10.1177/0306624X13520439
Leitner, M., & Helbich, M. (2011). The Impact of Hurricanes on Crime: A Spatio-Temporal Analysis in the City of Houston, Texas. Cartography and Geographic Information Science, 38(2), 213-221. doi:10.1559/15230406382213
Liggett, R., Loukaitou-Sideris, A., & Iseki, H. (2003). Journeys to crime: Assessing the effects of a light rail line on crime in the neighborhoods.
Lloyd, S., Farrell, G., & Pease, K. (1994). Preventing repeated domestic violence: A demonstration project on Merseyside.
Lloyd, S., & Roberts, C. (1973). A test for space clustering and its application to congenital limb defects in Cardiff. British journal of preventive & social medicine, 27(3), 188.
Loader, C. R. (1991). Large-Deviation Approximations to the Distribution of Scan Statistics. Advances in Applied Probability, 23(4), 751-771. doi:10.2307/1427674
Lober, W., Karras, B., Wagner, M., Overhage, J. M., Davidson, A., Fraser, H., . . . Tsui, F. (2002). Roundtable on Bioterrorism Detection: Information System-based Surveillance. Journal of the American Medical Informatics Association : JAMIA, 9, 105-115. doi:10.1197/jamia.M1052
Lohr, S. (2012). The Age of Big Data. The New York Times. Retrieved from https://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html
Mahfoud, M., Bhulai, S., & Mei, R. D. v. d. (2017). Spatio-temporal modeling for residential burglary. Paper presented at the 6th International Conference on Data Analytics, Barcelona (Spain).
Malczewski, J., & Poetz, A. (2005). Residential Burglaries and Neighborhood Socioeconomic Context in London, Ontario: Global and Local Regression Analysis* (Vol. 57).
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer research, 27(2 Part 1), 209-220.
Martin, D. (2002). Spatial Patterns in Residential Burglary: Assessing the Effect of Neighborhood Social Capital. Journal of Contemporary Criminal Justice, 18(2), 132-146. doi:10.1177/1043986202018002002
Matsueda, R. L. (2017). Social Structure, Culture, and Crime: Assessing Kornhauser’s Challenge to Criminology. Retrieved from https://www.semanticscholar.org/paper/Social-Structure%2C-Culture%2C-and-Crime%3A-Assessing-to-Matsueda/d9505d30dbc23847b4b1da588a010f796c58dc42
Mayhew, P. (Ed.) (1990). Opportunity and Vehicle Crime. Aldershot UK: Grower.
Meier, R. F., & Miethe, T. D. (1993). Understanding Theories of Criminal Victimization. Crime and Justice, 17, 459-499.
Messner, S. F., Krohn, M. D., & Liska, A. E. (1989). Theoretical integration in the study of deviance and crime : problems and prospects. Albany, N.Y.: State University of New York Press.
Midi, H., Sarkar, S., & Rana, S. (2013). Collinearity diagnostics of binary logistic regression model. Journal of Interdisciplinary Mathematics, 13, 253-267. doi:10.1080/09720502.2010.10700699
Miethe, T. D., & McDowall, D. (1993). Contextual Effects in Models of Criminal Victimization*. Social Forces, 71(3), 741-759. doi:10.1093/sf/71.3.741
Miethe, T. D., & Meier, R. F. (1994). Crime and its Social Context: Toward an Integrated Theory of Offenders, Victims, and Situations. Albany, NY: State University of New York.
Miller, H. J. (2004). Tobler's First Law and Spatial Analysis. Annals of the Association of American Geographers, 94(2), 284-289.
Moraga, P., & Kulldorff, M. (2013). Detection of spatial variations in temporal trends with a quadratic function. Statistical Methods in Medical Research, 25(4), 1422-1437. doi:10.1177/0962280213485312
Nakaya, T., & Yano, K. (2010). Visualising crime clusters in a space‐time cube: An exploratory data‐analysis approach using space‐time kernel density estimation and scan statistics. Transactions in GIS, 14(3), 223-239.
Naus, J. I. (1965). Clustering of Random Points in Two Dimensions. Biometrika, 52(1/2), 263-267. doi:10.2307/2333829
Newman, O. (1995). Defensible Space: A New Physical Planning Tool for Urban Revitalization. Journal of the American Planning Association, 61(2), 149-155. doi:10.1080/01944369508975629
Nissan, E. (2012). An Overview of Data Mining for Combating Crime. Applied Artificial Intelligence, 26(8), 760-786. doi:10.1080/08839514.2012.713309
Odoi, A., Martin, S. W., Michel, P., Middleton, D., Holt, J., & Wilson, J. (2004). Investigation of clusters of giardiasis using GIS and a spatial scan statistic. International Journal of Health Geographics, 3(1), 11. doi:10.1186/1476-072x-3-11
Openshaw, S., Charlton, M., Wymer, C., & Craft, A. (1987). A Mark 1 Geographical Analysis Machine for the automated analysis of point data sets. International Journal of Geographical Information Systems, 1(4), 335-358. doi:10.1080/02693798708927821
Popper, K. (1959). The Logic of Scientific Discovery. In. Retrieved from http://strangebeautiful.com/other-texts/popper-logic-scientific-discovery.pdf
Poulsen, E., & Kennedy, L. W. (2004). Using dasymetric mapping for spatially aggregated crime data. Journal of Quantitative Criminology, 20(3), 243-262.
Prates, M. O., Kulldorff, M., & Assunção, R. M. (2014). Relative risk estimates from spatial and space-time scan statistics: are they biased? Statistics in medicine, 33(15), 2634-2644. doi:10.1002/sim.6143
Ramasamy, J., & Janarthanan, K. (2019). A Study On Spatial Variations In Temporal Trends Of Dengue Incidences In Tamil Nadu, India. International Journal of Scientific & Technology Research, 8, 788-792.
Ratcliffe, J. H. (2004). Geocoding crime and a first estimate of a minimum acceptable hit rate. International Journal of Geographical Information Science, 18(1), 61-72. doi:10.1080/13658810310001596076
Ratcliffe, J. H. (2005). Detecting Spatial Movement of Intra-Region Crime Patterns Over Time. Journal of Quantitative Criminology, 21(1), 103-123.
Rice, K. J., & Smith, W. R. (2002). Socioecological Models of Automotive Theft: Integrating Routine Activity and Social Disorganization Approaches. Journal of Research in Crime and Delinquency, 39(3), 304-336. doi:10.1177/002242780203900303
Rountree, P., Land, K., & Miethe, T. (1994). Macro-micro integration in the study of victimization: A hierarchical logistic model analysis across Seattle neighborhoods. Criminology, 32(3), 387. doi:10.1111/j.1745-9125.1994.tb01159.x
Sampson, R. J., Raudenbush, S. W., & Earls, F. (1997). Neighborhoods and violent crime: A multilevel study of collective efficacy. SCIENCE, 277(5328), 918-924.
Schapire, R. E. (1990). The strength of weak learnability. Machine learning, 5(2), 197-227. doi:10.1007/bf00116037
Schapire, R. E., & Singer, Y. (1999). Improved Boosting Algorithms Using Confidence-rated Predictions. Machine learning, 37(3), 297-336. doi:10.1023/a:1007614523901
Shaw, C. R., & McKay, H. D. (1942). Juvenile delinquency and urban areas. Chicago, IL, US: University of Chicago Press.
Siemiatycki, J. (1978). Mantel's space-time clustering statistic: computing higher moments and a comparison of various data transforms. Journal of statistical Computation and Simulation, 7(1), 13-31.
Smith, W., Frazee, S., & Davison, E. (2006). Furthering the Integration of Routine Activity and Social Disorganization Theories: Small Units of Analysis and the Study of Street Robbery as a Diffusion Process. Criminology, 38, 489-524. doi:10.1111/j.1745-9125.2000.tb00897.x
Snook, B., Dhami, M. K., & Kavanagh, J. M. (2011). Simply Criminal: Predicting Burglars’ Occupancy Decisions with a Simple Heuristic. Law and Human Behavior, 35(4), 316-326. doi:10.1007/s10979-010-9238-0
Stibbs, A. (1994). Deconstructing Burglars: Formal analysis as a Pedagogic Jemmy. Children's Literature in Education, 25(4), 213-224. doi:10.1007/bf02355302
Sugumaran, R., Larson, S. R., & Degroote, J. P. (2009). Spatio-temporal cluster analysis of county-based human West Nile virus incidence in the continental United States. Int J Health Geogr, 8, 43. doi:10.1186/1476-072X-8-43
Swartz, C. (2000). Analyzing Crime Patterns: Frontiers of Practice. In V. Goldsmith, P. G. McGuire, J. H. Mollenkopf, & T. A. Ross (Eds.). Retrieved from http://sk.sagepub.com/books/analyzing-crime-patterns doi:10.4135/9781452220369
Tango, T. (2010). Statistical Methods for Disease Clustering. New York Springer.
Tango, T., & Takahashi, K. (2012). A flexible spatial scan statistic with a restricted likelihood ratio for detecting disease clusters. Stat Med, 31(30), 4207-4218. doi:10.1002/sim.5478
Taylor, R. B., & Harrell, A. (1996). Physical environment and crime: US Department of Justice, Office of Justice Programs, National Institute of ….
Tonini, M., Tuia, D., & Ratle, F. (2009). Detection of clusters using space - time scan statistics. International Journal of Wildland Fire, 18(7). doi:10.1071/wf07167
Townsley, M. (2008). Visualising space time patterns in crime: the hotspot plot. Crime patterns and analysis, 1(1), 61-74.
Townsley, M., Birks, D., Ruiter, S., Bernasco, W., & White, G. (2016). Target Selection Models with Preference Variation Between Offenders. Journal of Quantitative Criminology, 32(2), 283-304. doi:10.1007/s10940-015-9264-7
Townsley, M., Homel, R., & Chaseling, J. (2000). Repeat Burglary Victimisation: Spatial and Temporal Patterns. Australian & New Zealand Journal of Criminology, 33(1), 37-63. doi:10.1177/000486580003300104
Triplett, R. A., Sun, I. Y., & Gainey, R. R. (2005). Social Disorganization and the Ability and Willingness to Enact Control:A Preliminary Test Western Criminology Review, 6(1), 89-103
Turnbull, B., J. Iwano, E., S. Burnett, W., L. Howe, H., & C. Clark, L. (1990). Monitoring for Clusters of Disease: Application to Leukemia Incidence in Upstate New York (Vol. 132).
Vesey, B. M., & Messner, S. F. (1999). Further Testing of Social Disorganization Theory: An Elaboration of Sampson and Groves's “Community Structure and Crime”. Journal of Research in Crime and Delinquency, 36(2), 156-174. doi:10.1177/0022427899036002002
Weisburd, D., Bushway, S., Lum, C., & Yang, S.-M. (2004). Trajectories of Crime at Places: A Longitudinal Study of Street Segments in the City of Seattle. Criminology, 42, 283-322. doi:10.1111/j.1745-9125.2004.tb00521.x
Weisburd, D., Groff, E., & Yang, S.-M. (2013). The Criminology of Place: Street Segments and Our Understanding of the Crime Problem. The Criminology of Place: Street Segments and Our Understanding of the Crime Problem, 1-288. doi:10.1093/acprof:oso/9780195369083.001.0001
Williams, G. J. (2011). Data Mining with Rattle and R: The Art of Excavating Data for Knowledge Discovery. New York Dordrecht Heidelberg London: Springer.
Wilson, J. Q., & Kelling, G. L. (1982). Broken Windows: The Police and Neighbourhood Safety. The Atlantic Monthly(March).
Wortley, R., & Ann Mazerolle, L. (2009). Environmental Criminology and Crime Analysis: Situating the Theory, Analytic Approach and Application (Vol. 11).
Xu, Y., Fu, C., Kennedy, E., Jiang, S., & Owusu-Agyemang, S. (2018). The impact of street lights on spatial-temporal patterns of crime in Detroit, Michigan. Cities, 79, 45-52. doi:10.1016/j.cities.2018.02.021
Zhang, L., Messner, S. F., & Liu, J. (2007). A multilevel analysis of the risk of household burglary in the city of Tianjin, China. The British Journal of Criminology, 47(6), 918-937.