|
1.Lech, G., et al., Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances. World J Gastroenterol, 2016. 22(5): p. 1745-55. 2.Zhang, L. and J.W. Shay, Multiple Roles of APC and its Therapeutic Implications in Colorectal Cancer. J Natl Cancer Inst, 2017. 109(8). 3.Farooqi, A.A., et al., Overview of the oncogenic signaling pathways in colorectal cancer: Mechanistic insights. Semin Cancer Biol, 2019. 58: p. 65-79. 4.Bhattacharya, I., et al., Assessment of beta-catenin expression by immunohistochemistry in colorectal neoplasms and its role as an additional prognostic marker in colorectal adenocarcinoma. Med Pharm Rep, 2019. 92(3): p. 246-252. 5.Cheng, X., et al., Therapeutic potential of targeting the Wnt/beta-catenin signaling pathway in colorectal cancer. Biomed Pharmacother, 2019. 110: p. 473-481. 6.Li, Y., et al., Adenomatous polyposis coli (APC) regulates miR17-92 cluster through beta-catenin pathway in colorectal cancer. Oncogene, 2016. 35(35): p. 4558-4568. 7.Zhan, T., N. Rindtorff, and M. Boutros, Wnt signaling in cancer. Oncogene, 2017. 36(11): p. 1461-1473. 8.Chang, H.Y., et al., Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science, 1998. 281(5384): p. 1860-3. 9.Yang, X., et al., Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell, 1997. 89(7): p. 1067-76. 10.Michaelson, J.S., et al., Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev, 1999. 13(15): p. 1918-23. 11.Wasylishen, A.R., et al., Daxx Functions Are p53-Independent In Vivo. Mol Cancer Res, 2018. 16(10): p. 1523-1529. 12.Mahmud, I. and D. Liao, DAXX in cancer: phenomena, processes, mechanisms and regulation. Nucleic Acids Res, 2019. 47(15): p. 7734-7752. 13.Santiago, A., et al., Identification of two independent SUMO-interacting motifs in Daxx: evolutionary conservation from Drosophila to humans and their biochemical functions. Cell Cycle, 2009. 8(1): p. 76-87. 14.Tzeng, S.L., et al., Physiological and functional interactions between Tcf4 and Daxx in colon cancer cells. J Biol Chem, 2006. 281(22): p. 15405-11. 15.Galang, C.K., et al., Changes in the expression of many Ets family transcription factors and of potential target genes in normal mammary tissue and tumors. J Biol Chem, 2004. 279(12): p. 11281-92. 16.Gutierrez-Hartmann, A., D.L. Duval, and A.P. Bradford, ETS transcription factors in endocrine systems. Trends Endocrinol Metab, 2007. 18(4): p. 150-8. 17.Hollenhorst, P.C., D.A. Jones, and B.J. Graves, Expression profiles frame the promoter specificity dilemma of the ETS family of transcription factors. Nucleic Acids Res, 2004. 32(18): p. 5693-702. 18.Wang, C.Y., et al., Evolutionarily conserved Ets family members display distinct DNA binding specificities. J Exp Med, 1992. 175(5): p. 1391-9. 19.Papas, T.S., et al., Molecular evolution of ets genes from avians to mammals and their cytogenetic localization to regions involved in leukemia. Gene Amplif Anal, 1986. 4: p. 207-38. 20.Donaldson, L.W., et al., Solution structure of the ETS domain from murine Ets-1: a winged helix-turn-helix DNA binding motif. Embo j, 1996. 15(1): p. 125-34. 21.Kas, K., et al., ESE-3, a novel member of an epithelium-specific ets transcription factor subfamily, demonstrates different target gene specificity from ESE-1. J Biol Chem, 2000. 275(4): p. 2986-98. 22.Seth, A. and D.K. Watson, ETS transcription factors and their emerging roles in human cancer. Eur J Cancer, 2005. 41(16): p. 2462-78. 23.Turner, D.P., et al., Defining ETS transcription regulatory networks and their contribution to breast cancer progression. J Cell Biochem, 2007. 102(3): p. 549-59. 24.Luk, I.Y., C.M. Reehorst, and J.M. Mariadason, ELF3, ELF5, EHF and SPDEF Transcription Factors in Tissue Homeostasis and Cancer. Molecules, 2018. 23(9). 25.Tugores, A., et al., The epithelium-specific ETS protein EHF/ESE-3 is a context-dependent transcriptional repressor downstream of MAPK signaling cascades. J Biol Chem, 2001. 276(23): p. 20397-406. 26.Shi, J., et al., Increased expression of EHF via gene amplification contributes to the activation of HER family signaling and associates with poor survival in gastric cancer. Cell Death Dis, 2016. 7(10): p. e2442. 27.He, J., et al., Profile of Ets gene expression in human breast carcinoma. Cancer Biol Ther, 2007. 6(1): p. 76-82. 28.Sinh, N.D., et al., Ets1 and ESE1 reciprocally regulate expression of ZEB1/ZEB2, dependent on ERK1/2 activity, in breast cancer cells. Cancer Sci, 2017. 108(5): p. 952-960. 29.Albino, D., et al., ESE3/EHF controls epithelial cell differentiation and its loss leads to prostate tumors with mesenchymal and stem-like features. Cancer Res, 2012. 72(11): p. 2889-900. 30.Clark, J.P. and C.S. Cooper, ETS gene fusions in prostate cancer. Nat Rev Urol, 2009. 6(8): p. 429-39. 31.Nicholas, T.R., B.G. Strittmatter, and P.C. Hollenhorst, Oncogenic ETS Factors in Prostate Cancer. Adv Exp Med Biol, 2019. 1210: p. 409-436. 32.Shaikhibrahim, Z., et al., Differential expression of ETS family members in prostate cancer tissues and androgen-sensitive and insensitive prostate cancer cell lines. Int J Mol Med, 2011. 28(1): p. 89-93. 33.Tomlins, S.A., et al., Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 2005. 310(5748): p. 644-8. 34.Kunderfranco, P., et al., ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS One, 2010. 5(5): p. e10547.
|