|
[1]. LUH, S.P., Diagnosis and treatment of primary spontaneous pneumothorax. 中華民國急救加護醫學會雜誌, 2010. 21: p. 9-20 [2]. Wang, Y., L.L. Sun, and Q. Jin, Enhanced Diagnosis of Pneumothorax with an Improved Real-time Augmentation for Imbalanced Chest X-rays Data Based on DCNN. IEEE/ACM Trans Comput Biol Bioinform, 2019. [3]. 衛生福利部統計處, 107年度全民健康保險醫療統計年報, 衛生福利部統計處, Editor. 2020. [4]. Fukushima, K., Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern, 1980. 36(4): p. 193-202. [5]. Krizhevsky, A.a.S., Ilya and Hinton, Geoffrey E., ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM, 2017. 60(June 2017). [6]. Taylor, A.G., C. Mielke, and J. Mongan, Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study. PLoS Med, 2018. 15(11): p. e1002697. [7]. Chan, Y.H., et al., Effective Pneumothorax Detection for Chest X-Ray Images Using Local Binary Pattern and Support Vector Machine. J Healthc Eng, 2018. 2018: p. 2908517. [8].Li, X., et al., Deep learning-enabled system for rapid pneumothorax screening on chest CT. European journal of radiology, 2019. 120: p. 108692-108692. [9]. Nam, J.G., et al., Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. Radiology, 2019. 290(1): p. 218-228. [10]. Goodfellow I., P.-A.J., Mirza M., et al, Generative adversarial nets. Adv Neural Inf Process Syst, 2014. 27: p. 2672-2680. [11]. Sorin, V., et al., Creating Artificial Images for Radiology Applications Using Generative Adversarial Networks (GANs) - A Systematic Review. Acad Radiol, 2020. [12]. David Berthelot, T.S., Luke Metz, BEGAN: Boundary Equilibrium Generative Adversarial Networks. 2017. [13]. Hah, J., et al., Information-Based Boundary Equilibrium Generative Adversarial Networks with Interpretable Representation Learning. Comput Intell Neurosci, 2018. 2018: p. 6465949. [14]. Armand Joulin, L.v.d.M., Allan Jabri, Nicolas Vasilache, Learning Visual Features from Large Weakly Supervised Data. 2015: arXiv.org. [15]. Suhua Lei, H.Z., Ke Wang, Zhendong Su, How Training Data Affect the Accuracy and Robustness of Neural Networks for Image Classification, in International Conference on Learning Representations. 2019.
|