跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/26 01:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇德池木格
研究生(外文):SUVDCHIMEG DAVAADORJ
論文名稱:使用模糊推理系統解決適婚年齡男女的婚姻匹配問題(以台灣婚姻介紹所為例)
論文名稱(外文):Using a fuzzy inference system to solve marriage match for physically mature people (Taiwanese marriage agent as the example)
指導教授:張百畝張百畝引用關係程守雄程守雄引用關係
指導教授(外文):BAE-MUU CHANGSHOU-HSIUNG CHENG
口試委員:蔡鴻旭洪珨隆張百畝
口試委員(外文):HONG-XU CAIXIA-LONG HONGBAE-MUU CHANG
口試日期:2020-07-10
學位類別:碩士
校院名稱:建國科技大學
系所名稱:服務與科技管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:66
中文關鍵詞:婚姻匹配FIS功能會員功能模糊規則
外文關鍵詞:Marriage matchFISFeaturesMembership functionFuzzy rules
IG URL:suvddaa
Facebook:Suvdchimeg Davaadorj
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本文提出了一種新的婚姻介紹所適婚年齡男女的婚姻匹配方法;即“使用模糊推理系統解決適婚年齡(FISMM)男女的婚姻匹配問題”。本FISMM方法在軟計算中利用模糊推理系統(FIS)來實現適婚年齡男女的婚姻匹配問題。首先; 每位適婚年齡男女分別提出四個特徵:身高、學歷、收入和性格; 以便在數據庫中尋找理想的交往對象。隨後、利用這四個特徵建立了一個FIS系統; 它可以在數據庫D中尋找一個查詢的適婚年齡男女與幾個候選的適婚年齡女男之間的婚姻匹配。最後; 實驗結果顯示FISMM方法可以達到令人滿意的婚姻匹配。
A novel method for marriage match in a marriage agent, called “Using a Fuzzy Inference System to solve Marriage Match (FISMM) for physically mature people”, is presented in this thesis. The FISMM method makes use of a Fuzzy Inference System (FIS) in soft computing to realize marriage match for physically mature people. First, each physically mature person provides four conditions: height, education degree, income, and personality, respectively, in order to obtain his/her ideal candidates. Subsequently, these four features are utilized to build an FIS, which can search for the marriage match between a query physically mature person and several sampling candidates in the database D. Finally, experimental results demonstrate that the FISMM method can reach a satisfying performance for marriage match of physically mature people under considerations here.
Table of Contents
Acknowledgments.....................................................I
摘要................................................................II
Abstract...........................................................III
Table of Contents...................................................IV
List of Tables......................................................VI
List of Figures....................................................VII
Chapter 1 Introduction...............................................1
1.1 Objective and motivation.........................................3
1.2 Organization.....................................................4
1.3 About marriage...................................................5
Chapter 2 Literature review..........................................7
2.1 Fuzzy logic......................................................7
2.2 Fuzzy set........................................................8
2.3 Membership function..............................................9
2.4 Logical operation of fuzzy sets and fuzzy rules.................14
2.4.1 Single rule and single variable...............................18
2.4.2 Multiple rules and multiple variables.........................20
2.5 Fuzzy inference system..........................................23
Chapter 3 The FISMM method..........................................28
3.1 Marriage match features of exploration..........................30
3.2 The composition of the FIS......................................30
3.3 The composition of training and testing sets....................34
Chapter 4 Result and discussion.....................................35
4.1 The database D of marriage match................................35
4.2 The fuzzified input and output variables........................40
4.3 Fuzzy rules.....................................................44
4.4 Fuzzy inference engine..........................................45
4.5 Defuzzification.................................................48
4.6 The quantitative index for the recognition performance..........49
4.7 Experimental results............................................51
Chapter 5 Conclusion and future work................................55
References..........................................................56


References
1.Chang, B. M. (2014). A neural-fuzzy system combined with particle swarm optimization for handwritten character recognition. Fundamenta Informaticae, 133(4), 345-366.
2.Chang, B. M., Tsai, H. H., & Yu, P. T. (2008). Handwritten character recognition using a neuro-fuzzy system. International Journal of Innovative Computing, Information and Control, 4(9), 2345-2362.
3.Chang, B. M., Tsai, H. H., & Yu, P. T. (2009). The Dempster-Shafer theory combined neural networks in handwritten character recognition. International Journal of Innovative Computing, Information and Control, 5(9), 2561-2573.
4.Chen, C. H., Su, M. T., Lin, C. J., & Lin, C. T. (2014). A hybrid of bacterial foraging optimization and particle swarm optimization for evolutionary neural fuzzy classifiers. International Journal of Fuzzy Systems, 16(3), 422-433.
5.Cyganek, B. (2015). Hybrid ensemble of classifiers for logo and trademark symbols recognition. Soft Computing, 19(12), 3413-3430.
6.Dubois, D., & Prade, H. (1980). Fuzzy Sets and Systems: Theory and Application, New York Academic Press.
7.Gaur, A. (2018). The definition of Marriage in Sociology. The editors of encyclopedia Britannica, https://www.britannica.com/topic/marriage.
8.Goltsev, A., & Rachkovskij, D. (2001). A recurrent neural network for partitioning of hand drawn characters into strokes of different orientations. International Journal of Neural Systems, 11(5), 463-475.
9.Hamedi, Z., & Jafari, S. (2011). Using Fuzzy Decision-Making in the E-tourism Industry: A Case Study of Shiraz City E-tourism. IJCSI International Journal of Computer Science Issues, 8(3), 1694-0814.
10.Heidar. A. M. (1999). An assistant professor in the College of Technology at the University of Houston, https://www.uh.edu/technology/.
11.Ijegwa, A. D., Rebecca, V. O., Olusegun, F., & Isaac, O. O. (2014). A Predictive Stock Market Technical Analysis Using Fuzzy Logic. Computer and Information Science, 7(3), 8989-8997.
12.Jonathan, G., & Robert, J. (2003). Choosing Membership Functions of Linguistic Terms, Automated Scheduling, Planning and Optimization Group. University of Nottingham, Nottingham, UK.
13.Katiyar, G., & Mehfuz, S. (2016). A hybrid recognition system for off-line handwritten characters. SpringerPlus, 5:357.
14.Khanale, P. B., & Chitnis, S. D. (2011). Handwritten Devanagari character recognition using artificial neural networks. Journal of Artificial Intelligence, 4(1), 55-62.
15.Kumar, J., Ye, P., & Doermann, D. (2014). Structural similarity for document image classification and retrieval. Pattern Recognition Letters, 43, 119-126.
16.Lee, C. H., Chang, F. Y., & Lin, C. M. (2014). DSP-based optical character recognition system using interval type-2 neural fuzzy system. International Journal of Fuzzy Systems, 16(1), 86-96.
17.Lin, C. T., Yeh, C. M., Liang, S. F., Chung, J. F., & Kumar, N. (2006). Support-vector-based fuzzy neural network for pattern classification. IEEE Transactions on Fuzzy Systems, 14(1), 31-41.
18.Lorigo, L. M., & Govindaraju, V. (2006). Offline Arabic handwriting recognition: A survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(5), 712-724.
19.Mamdani, E. H. (1977). Applications of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers, 26(12), 1182–1191.
20.Makhsoos, N. T., Ebrahimpour, R., & Hajiany, A. (2009). Face Recognition Based on Neuro-Fuzzy System. International Journal of Computer Science and Network Security, 9(4), 319-326.
21.Mathworks. (2020). Fuzzy logic system. www.mathworks.com.
22.Meena, K., Subramaniam, K., & Gomathy, M. (2013). Gender Classification in Speech Recognition using Fuzzy Logic and Neural Network. The International Arab Journal of Information Technology, 10(5), 477-485.
23.Noyan. Z, & Ismal. I. (2015). A fuzzy system application for mission planning to aerospace vehicles. www.researchgate.net.
24.Pham. T. M. 2018. Design of solving similarity recognition for casual pants based on fuzzy inference system, https://etds.ncl.edu.tw/.
25.Petrou, Z. I., Kosmidou, V., Manakos, I., Stathaki, T., Adamo, M., Tarantino, C., Tomaselli, V., Blonda, P., & Petrou, M. (2014). A rule-based classification methodology to handle uncertainty in habitat mapping employing evidential reasoning and fuzzy logic. Pattern Recognition Letters, 48, 24-33.
26.Psychology Today. (2015). How we find marriage partners. Psychology Today Magazine. https://www.psychologytoday.com.
27.Putri. H., & Robbi. R. (2017). Comparative Analysis of Membership Function on Making Mamdani Fuzzy Inference System for Decision Making. Journal of Physics: Conference Series, Volume 930, International Conference on Information and Communication Technology (IconICT), 25-26.
28.Rangasamy, K., As’ari, M. A., Rahmad, N. A., Ghazalia, N. F., (2020). Hockey activity recognition using pre-trained deep learning model. ICT Express, 1-5.
29.Russian dating agent. (2020). Marriage match. Best Russian Dating. https://www.best-russian-dating.com.
30.Shalini, P. (2011). A Fuzzy Similarity Based Concept Mining Model for Text Classification Text. International Journal of Advanced Computer Science and Applications, 2(11), 115-121.
31.Su, M. C., & Chang, S. T. (2012). Machine learning: Neural networks, fuzzy systems and gene algorithms. Chuan Hua Book Co.
32.Soteris, A. M. (2009). Designing and Modeling Solar Energy Systems. International Journal of Advanced Computer Science and Applications, https://www.researchgate.net/.
33.Techopedia. (2017). Fuzzy logic. www.Techopedia.com.
34.Tutorials point. (2020). Learn Fuzzy Logic. www.tutorialspoint.com.
35.Wang, W., Tang, J., Pan, Z., & Yan, C. (2015). Particle swarm optimization-based planning and scheduling for a laminar-flow operating room with downstream resources. Soft Computing, 19(10), 2913-2926.
36.You, P. S., Hsieh, Y. C., & Huang, C. M. (2009). A particle swarm optimization based algorithm to the internet subscription problem. Expert Systems with Applications, 36(3), 7093-7098.
37.Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338-35.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top