|
References 1.Chang, B. M. (2014). A neural-fuzzy system combined with particle swarm optimization for handwritten character recognition. Fundamenta Informaticae, 133(4), 345-366. 2.Chang, B. M., Tsai, H. H., & Yu, P. T. (2008). Handwritten character recognition using a neuro-fuzzy system. International Journal of Innovative Computing, Information and Control, 4(9), 2345-2362. 3.Chang, B. M., Tsai, H. H., & Yu, P. T. (2009). The Dempster-Shafer theory combined neural networks in handwritten character recognition. International Journal of Innovative Computing, Information and Control, 5(9), 2561-2573. 4.Chen, C. H., Su, M. T., Lin, C. J., & Lin, C. T. (2014). A hybrid of bacterial foraging optimization and particle swarm optimization for evolutionary neural fuzzy classifiers. International Journal of Fuzzy Systems, 16(3), 422-433. 5.Cyganek, B. (2015). Hybrid ensemble of classifiers for logo and trademark symbols recognition. Soft Computing, 19(12), 3413-3430. 6.Dubois, D., & Prade, H. (1980). Fuzzy Sets and Systems: Theory and Application, New York Academic Press. 7.Gaur, A. (2018). The definition of Marriage in Sociology. The editors of encyclopedia Britannica, https://www.britannica.com/topic/marriage. 8.Goltsev, A., & Rachkovskij, D. (2001). A recurrent neural network for partitioning of hand drawn characters into strokes of different orientations. International Journal of Neural Systems, 11(5), 463-475. 9.Hamedi, Z., & Jafari, S. (2011). Using Fuzzy Decision-Making in the E-tourism Industry: A Case Study of Shiraz City E-tourism. IJCSI International Journal of Computer Science Issues, 8(3), 1694-0814. 10.Heidar. A. M. (1999). An assistant professor in the College of Technology at the University of Houston, https://www.uh.edu/technology/. 11.Ijegwa, A. D., Rebecca, V. O., Olusegun, F., & Isaac, O. O. (2014). A Predictive Stock Market Technical Analysis Using Fuzzy Logic. Computer and Information Science, 7(3), 8989-8997. 12.Jonathan, G., & Robert, J. (2003). Choosing Membership Functions of Linguistic Terms, Automated Scheduling, Planning and Optimization Group. University of Nottingham, Nottingham, UK. 13.Katiyar, G., & Mehfuz, S. (2016). A hybrid recognition system for off-line handwritten characters. SpringerPlus, 5:357. 14.Khanale, P. B., & Chitnis, S. D. (2011). Handwritten Devanagari character recognition using artificial neural networks. Journal of Artificial Intelligence, 4(1), 55-62. 15.Kumar, J., Ye, P., & Doermann, D. (2014). Structural similarity for document image classification and retrieval. Pattern Recognition Letters, 43, 119-126. 16.Lee, C. H., Chang, F. Y., & Lin, C. M. (2014). DSP-based optical character recognition system using interval type-2 neural fuzzy system. International Journal of Fuzzy Systems, 16(1), 86-96. 17.Lin, C. T., Yeh, C. M., Liang, S. F., Chung, J. F., & Kumar, N. (2006). Support-vector-based fuzzy neural network for pattern classification. IEEE Transactions on Fuzzy Systems, 14(1), 31-41. 18.Lorigo, L. M., & Govindaraju, V. (2006). Offline Arabic handwriting recognition: A survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(5), 712-724. 19.Mamdani, E. H. (1977). Applications of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers, 26(12), 1182–1191. 20.Makhsoos, N. T., Ebrahimpour, R., & Hajiany, A. (2009). Face Recognition Based on Neuro-Fuzzy System. International Journal of Computer Science and Network Security, 9(4), 319-326. 21.Mathworks. (2020). Fuzzy logic system. www.mathworks.com. 22.Meena, K., Subramaniam, K., & Gomathy, M. (2013). Gender Classification in Speech Recognition using Fuzzy Logic and Neural Network. The International Arab Journal of Information Technology, 10(5), 477-485. 23.Noyan. Z, & Ismal. I. (2015). A fuzzy system application for mission planning to aerospace vehicles. www.researchgate.net. 24.Pham. T. M. 2018. Design of solving similarity recognition for casual pants based on fuzzy inference system, https://etds.ncl.edu.tw/. 25.Petrou, Z. I., Kosmidou, V., Manakos, I., Stathaki, T., Adamo, M., Tarantino, C., Tomaselli, V., Blonda, P., & Petrou, M. (2014). A rule-based classification methodology to handle uncertainty in habitat mapping employing evidential reasoning and fuzzy logic. Pattern Recognition Letters, 48, 24-33. 26.Psychology Today. (2015). How we find marriage partners. Psychology Today Magazine. https://www.psychologytoday.com. 27.Putri. H., & Robbi. R. (2017). Comparative Analysis of Membership Function on Making Mamdani Fuzzy Inference System for Decision Making. Journal of Physics: Conference Series, Volume 930, International Conference on Information and Communication Technology (IconICT), 25-26. 28.Rangasamy, K., As’ari, M. A., Rahmad, N. A., Ghazalia, N. F., (2020). Hockey activity recognition using pre-trained deep learning model. ICT Express, 1-5. 29.Russian dating agent. (2020). Marriage match. Best Russian Dating. https://www.best-russian-dating.com. 30.Shalini, P. (2011). A Fuzzy Similarity Based Concept Mining Model for Text Classification Text. International Journal of Advanced Computer Science and Applications, 2(11), 115-121. 31.Su, M. C., & Chang, S. T. (2012). Machine learning: Neural networks, fuzzy systems and gene algorithms. Chuan Hua Book Co. 32.Soteris, A. M. (2009). Designing and Modeling Solar Energy Systems. International Journal of Advanced Computer Science and Applications, https://www.researchgate.net/. 33.Techopedia. (2017). Fuzzy logic. www.Techopedia.com. 34.Tutorials point. (2020). Learn Fuzzy Logic. www.tutorialspoint.com. 35.Wang, W., Tang, J., Pan, Z., & Yan, C. (2015). Particle swarm optimization-based planning and scheduling for a laminar-flow operating room with downstream resources. Soft Computing, 19(10), 2913-2926. 36.You, P. S., Hsieh, Y. C., & Huang, C. M. (2009). A particle swarm optimization based algorithm to the internet subscription problem. Expert Systems with Applications, 36(3), 7093-7098. 37.Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338-35.
|