跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/03 14:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宜萱
研究生(外文):Yi-Hsuan Chen
論文名稱:MOFs@SiO2核殼微球應用於二氧化碳環加成反應之研究
論文名稱(外文):The Study of MOFs@SiO2 Core-shell Microspheres Applied in CO2 Cycloadditions
指導教授:李世琛
指導教授(外文):Szetsen Lee
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:118
中文關鍵詞:金屬有機骨架二氧化矽核殼微球二氧化碳環加成異相催化
外文關鍵詞:metal-organic frameworkssilicacore-shell microspherescarbon dioxidecycloadditionheterogeneous catalysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
Abstract II
謝辭 III
目錄 IV
圖目錄 VII
表目錄 XI
Scheme目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 金屬有機骨架介紹 2
1-2-1 金屬有機骨架之孔洞型態 4
1-2-2 金屬有機骨架之特性 8
1-3 金屬有機骨架複合材料之簡介 10
1-3-1 MOFs@SiO2之介紹 11
1-3-2 MOFs@SiO2之發展近況 13
1-4 催化反應介紹 19
1-4-1 二氧化碳催化反應介紹與應用 21
1-4-2 二氧化碳與環氧化物之環加成反應 23
1-5 文獻回顧 25
1-6 研究動機 27
第二章 實驗介紹 28
2-1 實驗儀器與裝置 28
2-2 藥品名稱與廠牌 29
2-3 儀器設備使用介紹 31
2-3-1 傅立葉轉換紅外線光譜儀(FT-IR) 31
2-3-2 粉末X光繞射儀(PXRD) 31
2-3-3 場發射掃描式電子顯微鏡(FE-SEM) 31
2-3-4 比表面積與孔隙分佈分析儀(Surface area and porosimetry analyzer) 32
2-3-5 熱重分析儀(TGA) 32
2-3-6 X光光電子能譜儀(XPS) 32
2-3-7 核磁共振光譜儀(NMR) 32
2-4 金屬有機骨架與MOFs@SiO2之製備 33
2-4-1 金屬有機骨架合成方法 33
2-4-2 二氧化矽改質方法 35
2-4-3 MOFs@SiO2之製備 36
2-5 二氧化碳與環氧化物之環加成反應 38
第三章 結果與討論 39
3-1 材料製備與鑑定 39
3-1-1 金屬有機骨架之合成與鑑定 39
3-1-2 羧酸基改質二氧化矽之合成與鑑定 43
3-1-3 MOFs@SiO2之合成與鑑定 45
3-2 MOFs@SiO2合成方法探討 60
3-2-1 PVP於合成MOFs@SiO2之影響 60
3-2-2 反應條件對MOFs@SiO2晶體之影響 62
3-3 二氧化碳與環氧化物之環加成反應探討 63
3-3-1 不同種類MOFs@SiO2之催化性能 64
3-3-2 助催化劑於環加成反應之影響 75
3-3-3 利用不同環氧化物進行環加成反應 78
3-3-4 催化劑之重複使用 80
3-3-5 環加成反應之反應機制 83
3-4 與其它ZIF-67催化環加成反應之文獻比較 85
第四章 結論 87
參考文獻 88
附錄 100

圖目錄
圖1- 1 大氣中二氧化碳含量 1
圖1- 2 Cu(4,4''-bpy)1.5·NO3(H2O)1.25與 MOF-5之結構 3
圖1- 3 孔洞大小示意圖 4
圖1- 4 不同孔洞尺寸之IRMOF-74晶體結構 5
圖1- 5 具有兩種籠狀結構之MIL-100三維結構 7
圖1- 6 等結構之IRMOF系列 7
圖1- 7 金屬有機骨架之應用 8
圖1- 8 三維網絡交互貫穿示意圖 9
圖1- 9 孔洞內吸附水分子造成結構轉換 9
圖1- 10 金屬有機骨架與二氧化矽複合材料之合成與應用 10
圖1- 11 SiO2@Ln-dpa核殼微球之合成與感測示意圖 14
圖1- 12 SiO2@CIM-80(Al)用於分散式固相萃取吸附劑檢測多環芳香烴 14
圖1- 13每月平均二氧化碳含量 21
圖2- 1 高壓反應器裝置 38
圖3- 1 MOF-74之PXRD光譜圖 39
圖3- 2 UiO-66之PXRD光譜圖 40
圖3- 3 ZIF-8之PXRD光譜圖 40
圖3- 4 ZIF-67之PXRD光譜圖 40
圖3- 5 MOF-74之SEM圖 41
圖3- 6 UiO-66之SEM圖 41
圖3- 7 MIL-88B之SEM圖 42
圖3- 8 ZIF-67之SEM圖 42
圖3- 9 ZIF-8之SEM圖 42
圖3- 10 改質二氧化矽之FT-IR光譜圖 44
圖3- 11 ZIF-67@SiO2核殼複合材料結構示意圖 45
圖3- 12 MOF-74@SiO2之PXRD光譜圖 46
圖3- 13 UiO-66@SiO2之PXRD光譜圖 46
圖3- 14 ZIF-8@SiO2之PXRD光譜圖 47
圖3- 15 ZIF-67@SiO2之PXRD光譜圖 47
圖3- 16 MIL-88B@SiO2之PXRD光譜圖 47
圖3- 17 MOF-74@SiO2之FT-IR光譜圖 48
圖3- 18 UiO-66@SiO2之FT-IR光譜圖 48
圖3- 19 ZIF-8@SiO2之FT-IR光譜圖 48
圖3- 20 ZIF-67@SiO2之FT-IR光譜圖 49
圖3- 21 MIL-88B@SiO2之FT-IR光譜圖 49
圖3- 22 ZIF-67@SiO2之SEM圖 50
圖3- 23 ZIF-67@SiO2之Si、O、N、Co元素EDS mapping圖 52
圖3- 24 ZIF-67@SiO2之XPS光譜圖 53
圖3- 25 ZIF-67@SiO2核殼微球孔徑分佈圖 55
圖3- 26 ZIF-67@SiO2核殼微球之氮氣吸脫附曲線圖 56
圖3- 27 ZIF-67@SiO2之TGA曲線圖 57
圖3- 28 ZIF-8@SiO2之TGA曲線圖 58
圖3- 29 MOF-74@SiO2之TGA曲線圖 58
圖3- 30 UiO-66@SiO2之TGA曲線圖 59
圖3- 31 MIL-88B@SiO2之TGA曲線圖 59
圖3- 32 PXRD光譜圖 61
圖3- 33 UiO-66@SiO2之SEM圖 61
圖3- 34 UiO-66@SiO2核殼微球 62
圖3- 35 不同種類MOFs@SiO2之催化性能 66
圖3- 36 ZIF-67@SiO2反應前後PXRD光譜圖 66
圖3- 37 ZIF-67@SiO2反應前後SEM圖 67
圖3- 38 UiO-66@SiO2反應前後PXRD光譜圖 67
圖3- 39 ZIF-8@SiO2反應前後PXRD光譜圖 68
圖3- 40 MOF-74@SiO2反應前後PXRD光譜圖 68
圖3- 41 MIL-88B@SiO2反應前後PXRD光譜圖 68
圖3- 42 二氧化矽、ZIF-67@SiO2以及ZIF-67分別浸泡於正己烷、四氫呋喃、水以及環氧丙烷 70
圖3- 43 二氧化矽、ZIF-67@SiO2以及ZIF-67分別浸泡於正己烷、四氫呋喃、水以及環氧丙烷 71
圖3- 44 二氧化矽浸泡溶劑之PXRD圖 72
圖3- 45 ZIF-67@SiO2浸泡溶劑之PXRD圖 72
圖3- 46 ZIF-67浸泡溶劑之PXRD圖 73
圖3- 47 PO與PC之1H NMR光譜圖 74
圖3- 48 助催化劑結構圖 76
圖3- 49 重複使用ZIF-67@SiO2核殼微球進行環加成反應之轉換率 81
圖3- 50 ZIF-67@SiO2催化劑重複使用之PXRD光譜圖 81

表目錄
表1- 1 近五年(2016-2020年)MOFs@SiO2球形核殼微粒之發展現況 15
表1- 2 近六年(2015-2020年)MOFs@SiO2有機催化應用 18
表1- 3 二氧化碳異相有機催化反應 22
表1- 4 近五年(2016-2020年)金屬有機骨架衍生物於異相有機催化之文獻回顧 26
表2- 1 本研究使用儀器裝置之廠牌與型號 28
表2- 2 本研究所使用合成MOFs@SiO2核殼複合催化劑之實驗藥品 29
表2- 3 本研究所使用環加成反應之實驗藥品 30
表2- 4 本研究所使用溶劑及其他藥品 30
表3- 1 ZIF-67@SiO2之EDS mapping元素比例 51
表3- 2 ZIF-67@SiO2塗佈前後之元素分析比例 51
表3- 3 MOFs@SiO2與其前驅物之表面積與孔徑分佈 54
表3- 4 MOFs@SiO2所佔金屬有機骨架之比例 57
表3- 5 不同種類MOFs@SiO2之催化性能 65
表3- 6 溶劑之極性參數 73
表3- 7 各種助催化劑與不同比例之催化性能 77
表3- 8 不同取代基環氧化物之環加成反應 79
表3- 9 ZIF-67@SiO2於環加成反應之重複使用 82
表3- 10 ZIF-67催化環加成反應之文獻 86

Scheme目錄
Scheme 1- 1 金屬有機骨架合成示意圖 2
Scheme 1- 2 原位合成UiO-66@SiO2核殼複合材料之示意圖 12
Scheme 1- 3 用於藥物傳遞之UiO-66-NH2@EPSQ合成流程圖 12
Scheme 1- 4連續流催化反應之催化劑ZrOTf-BTC@SiO2合成示意圖 17
Scheme 1- 5 燃料電池中Co/NCNTs-Zn/Co催化劑合成示意圖 17
Scheme 1- 6 用於二氧化碳環加成反應之勻相催化劑 19
Scheme 1- 7 [Cd(4,4’-bpy)2](NO3)2異相催化劑之結構 20
Scheme 1- 8 二氧化碳與環氧化物之環加成反應可能機制 23
Scheme 1- 9 路易斯酸催化二氧化碳與環氧化物之反應機制 24
Scheme 1- 10 本研究MOFs@SiO2催化劑合成與反應之示意圖 27
Scheme 2- 1 二氧化矽羧酸改質流程圖 35
Scheme 3- 1 矽烷反應示意圖 43
Scheme 3- 2 二氧化矽羧酸改質流程圖 44
Scheme 3- 3 本研究MOFs@SiO2核殼微球之合成與環加成反應示意圖 63
Scheme 3- 4 ZIF-67@SiO2進行環加成反應之可能機制 84
1.Trends in Atmospheric Carbon Dioxide. https://www.esrl.noaa.gov/gmd/ccgg/trends/.
2.Ronda‐Lloret, M.; Rothenberg, G.; Shiju, N. R., A Critical Look at Direct Catalytic Hydrogenation of Carbon Dioxide to Olefins. ChemSusChem 2019, 12, 3896-3914.
3.Levenson, D. A.; Zhang, J.; Szell, P. M.; Bryce, D. L.; Gelfand, B. S.; Huynh, R. P.; Fylstra, N.; Shimizu, G. K., Effects of Secondary Anion on Proton Conduction in a Flexible Cationic Phosphonate Metal-Organic Framework. Chemistry of Materials 2019.
4.Liu, T.; Hong, X.; Liu, G., In Situ Generation of the Cu@ 3D-ZrO x Framework Catalyst for Selective Methanol Synthesis from CO2/H2. ACS Catalysis 2019, 10, 93-102.
5.Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S., Large-pore apertures in a series of metal-organic frameworks. science 2012, 336, 1018-1023.
6.Li, S.; Huo, F., Metal–organic framework composites: from fundamentals to applications. Nanoscale 2015, 7, 7482-7501.
7.Zhu, W.; Guo, J.; Agola, J. O.; Croissant, J. G.; Wang, Z.; Shang, J.; Coker, E.; Motevalli, B.; Zimpel, A.; Wuttke, S., Metal–Organic Framework Nanoparticle-Assisted Cryopreservation of Red Blood Cells. Journal of the American Chemical Society 2019, 141, 7789-7796.
8.Rocío-Bautista, P.; Taima-Mancera, I.; Pasán, J.; Pino, V., Metal-Organic Frameworks in green analytical chemistry. Separations 2019, 6, 33.
9.Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M., Ultrahigh Porosity in Metal-Organic Frameworks. Science 2010, 329, 424-428.
10.Schmidt, B. V., Metal‐Organic Frameworks in Polymer Science: Polymerization Catalysis, Polymerization Environment, and Hybrid Materials. Macromolecular rapid communications 2020, 41, 1900333.
11.Hoskins, B.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N (CH3) 4][CuIZnII (CN) 4] and CuI [4, 4'', 4'', 4''-tetracyanotetraphenylmethane] BF4. xC6H5NO2. Journal of the American Chemical Society 1990, 112, 1546-1554.
12.Gardner, G. B.; Venkataraman, D.; Moore, J. S.; Lee, S., Spontaneous assembly of a hinged coordination network. Nature 1995, 374, 792-795.
13.Munakata, M.; Kuroda-Sowa, T.; Maekawa, M.; Hirota, A.; Kitagawa, S., Building of 2D sheet of tetrakis (methylthio) tetrathiafulvalenes coordinating to copper (I) halides with zigzag and helical frames and the 3D network through the S. cntdot.. cntdot.. cntdot. S contacts. Inorganic Chemistry 1995, 34, 2705-2710.
14.Riou, D.; Roubeau, O.; Férey, G., Composite microporous compounds. Part I: Synthesis and structure determination of two new vanadium alkyldiphosphonates (MIL-2 and MIL-3) with three-dimensional open frameworks. Microporous and mesoporous materials 1998, 23, 23-31.
15.Yaghi, O.; Li, H., Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. Journal of the American Chemical Society 1995, 117, 10401-10402.
16.Li, H.; Eddaoudi, M.; O''Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. nature 1999, 402, 276-279.
17.Rouquerol, J.; Avnir, D.; Fairbridge, C.; Everett, D.; Haynes, J.; Pernicone, N.; Ramsay, J.; Sing, K.; Unger, K., Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry 1994, 66, 1739-1758.
18.Zou, R.; Abdel-Fattah, A. I.; Xu, H.; Zhao, Y.; Hickmott, D. D., Storage and separation applications of nanoporous metal–organic frameworks. CrystEngComm 2010, 12, 1337-1353.
19.Li, H.; Wang, K.; Sun, Y.; Lollar, C. T.; Li, J.; Zhou, H.-C., Recent advances in gas storage and separation using metal–organic frameworks. Materials Today 2018, 21, 108-121.
20.Yu, M.-H.; Zhang, P.; Feng, R.; Yao, Z.-Q.; Yu, Y.-C.; Hu, T.-L.; Bu, X.-H., Construction of a multi-cage-based MOF with a unique network for efficient CO2 capture. ACS applied materials & interfaces 2017, 9, 26177-26183.
21.Férey, G.; Serre, C.; Mellot‐Draznieks, C.; Millange, F.; Surblé, S.; Dutour, J.; Margiolaki, I., A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angewandte Chemie International Edition 2004, 43, 6296-6301.
22.Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O''Keeffe, M.; Yaghi, O. M., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469-472.
23.Cui, J.; Gao, N.; Yin, X.; Zhang, W.; Liang, Y.; Tian, L.; Zhou, K.; Wang, S.; Li, G., Microfluidic synthesis of uniform single-crystalline MOF microcubes with a hierarchical porous structure. Nanoscale 2018, 10, 9192-9198.
24.Qi, Z.-P.; Yang, J.-M.; Kang, Y.-S.; Guo, F.; Sun, W.-Y., Facile water-stability evaluation of metal–organic frameworks and the property of selective removal of dyes from aqueous solution. Dalton Transactions 2016, 45, 8753-8759.
25.Lin, Y.; Kong, C.; Chen, L., Amine-functionalized metal–organic frameworks: structure, synthesis and applications. RSC Advances 2016, 6, 32598-32614.
26.Yu, M.-H.; Space, B.; Franz, D.; Zhou, W.; He, C.; Li, L.; Krishna, R.; Chang, Z.; Li, W.; Hu, T.-L., Enhanced Gas Uptake in a Microporous Metal–Organic Framework via a Sorbate Induced-Fit Mechanism. Journal of the American Chemical Society 2019, 141, 17703-17712.
27.Liu, Y.; Xie, X.-Y.; Cheng, C.; Shao, Z.-S.; Wang, H.-S., Strategies to fabricate metal–organic framework (MOF)-based luminescent sensing platforms. Journal of Materials Chemistry C 2019, 7, 10743-10763.
28.Lu, L.; Ma, M.; Gao, C.; Li, H.; Li, L.; Dong, F.; Xiong, Y., Metal Organic Framework@ Polysilsesequioxane Core/Shell-Structured Nanoplatform for Drug Delivery. Pharmaceutics 2020, 12, 98.
29.Qazvini, O. T.; Babarao, R.; Shi, Z.-L.; Zhang, Y.-B.; Telfer, S. G., A robust ethane-trapping metal–organic framework with a high capacity for ethylene purification. Journal of the American Chemical Society 2019, 141, 5014-5020.
30.Huang, C.-W.; Nguyen, V.-H.; Zhou, S.-R.; Hsu, S.-Y.; Tan, J.-X.; Wu, K. C. W., Metal–organic frameworks: preparation and applications in highly efficient heterogeneous photocatalysis. Sustainable Energy & Fuels 2020, 4, 504-521.
31. Chaemchuen, S.; Kabir, N. A.; Zhou, K.; Verpoort, F., Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy. Chemical Society reviews 2013, 42, 9304-9332.
32.Song, L.; Zhang, J.; Sun, L.; Xu, F.; Li, F.; Zhang, H.; Si, X.; Jiao, C.; Li, Z.; Liu, S.; Liu, Y.; Zhou, H.; Sun, D.; Du, Y.; Cao, Z.; Gabelica, Z., Mesoporous metal–organic frameworks: design and applications. Energy & Environmental Science 2012, 5, 7508-7520.
33.Haldar, R.; Sikdar, N.; Maji, T. K., Interpenetration in coordination polymers: structural diversities toward porous functional materials. Materials Today 2015, 18, 97-116.
34.Sheng, J.; Wang, L.; Deng, L.; Zhang, M.; He, H.; Zeng, K.; Tang, F.; Liu, Y.-N., MOF-templated fabrication of hollow Co4N@ N-doped carbon porous nanocages with superior catalytic activity. ACS applied materials & interfaces 2018, 10, 7191-7200.
35.Haigis, V.; Coudert, F.-X.; Vuilleumier, R.; Boutin, A., Investigation of structure and dynamics of the hydrated metal–organic framework MIL-53(Cr) using first-principles molecular dynamics. Physical Chemistry Chemical Physics 2013, 15, 19049-19056.
36.Ma, M.; Lu, L.; Li, H.; Xiong, Y.; Dong, F., Functional Metal Organic Framework/SiO2 Nanocomposites: From Versatile Synthesis to Advanced Applications. Polymers 2019, 11, 1823.
37.Rao, Z.; Feng, K.; Tang, B.; Wu, P., Surface decoration of amino-functionalized metal–organic framework/graphene oxide composite onto polydopamine-coated membrane substrate for highly efficient heavy metal removal. ACS applied materials & interfaces 2017, 9, 2594-2605.
38.Wu, Q.; Wang, J.; Jin, H.; Yan, T.; Yi, G.; Su, X.; Dai, W.; Wang, X., MOF-derived rambutan-like nanoporous carbon/nanotubes/Co composites with efficient microwave absorption property. Materials Letters 2019, 244, 138-141.
39.Qi, X.-L.; Zhou, D.-D.; Zhang, J.; Hu, S.; Haranczyk, M.; Wang, D.-Y., Simultaneous improvement of mechanical and fire-safety properties of polymer composites with phosphonate-loaded MOF additives. ACS applied materials & interfaces 2019, 11, 20325-20332.
40.Gao, B.; Huang, M.; Zhang, Z.; Yang, Q.; Su, B.; Yang, Y.; Ren, Q.; Bao, Z., Hybridization of metal–organic framework and monodisperse spherical silica for chromatographic separation of xylene isomers. Chinese Journal of Chemical Engineering 2019, 27, 818-826.
41.Lener, G.; Otero, M.; Barraco, D.; Leiva, E. P. M., Energetics of silica lithiation and its applications to lithium ion batteries. Electrochimica Acta 2018, 259, 1053-1058.
42.Si, T.; Ma, J.; Lu, X.; Wang, L.; Liang, X.; Wang, S., Core− Shell Metal− Organic Frameworks as the Stationary Phase for Hydrophilic Interaction Liquid Chromatography. ACS Applied Nano Materials 2020.
43.Lian, X.; Yan, B., Novel core–shell structure microspheres based on lanthanide complexes for white-light emission and fluorescence sensing. Dalton Transactions 2016, 45, 2666-2673.
44.Gutiérrez-Serpa, A.; Jiménez-Abizanda, A. I.; Jiménez-Moreno, F.; Pasán, J.; Pino, V., Core-shell microparticles formed by the metal-organic framework CIM-80 (Al)(Silica@ CIM-80 (Al)) as sorbent material in miniaturized dispersive solid-phase extraction. Talanta 2020, 120723.
45.Sorribas, S.; Zornoza, B.; Serra-Crespo, P.; Gascon, J.; Kapteijn, F.; Téllez, C.; Coronas, J., Synthesis and gas adsorption properties of mesoporous silica-NH2-MIL-53 (Al) core–shell spheres. Microporous and Mesoporous Materials 2016, 225, 116-121.
46.Arrua, R.; Peristyy, A.; Nesterenko, P.; Das, A.; D''Alessandro, D.; Hilder, E., UiO-66@ SiO 2 core–shell microparticles as stationary phases for the separation of small organic molecules. Analyst 2017, 142, 517-524.
47.Peng, J.; Sun, X.; Li, Y.; Huang, C.; Jin, J.; Wang, J.; Chen, J., Controllable growth of ZIF-8 layers with nanometer-level precision on SiO2 nano-powders via liquid phase epitaxy stepwise growth approach. Microporous and Mesoporous Materials 2018, 268, 268-275.
48.Ehrling, S.; Kutzscher, C.; Freund, P.; Müller, P.; Senkovska, I.; Kaskel, S., MOF@ SiO2 core-shell composites as stationary phase in high performance liquid chromatography. Microporous and Mesoporous Materials 2018, 263, 268-274.
49.El-Mehalmey, W. A.; Ibrahim, A. H.; Abugable, A. A.; Hassan, M. H.; Haikal, R. R.; Karakalos, S. G.; Zaki, O.; Alkordi, M. H., Metal–organic framework@silica as a stationary phase sorbent for rapid and cost-effective removal of hexavalent chromium. Journal of Materials Chemistry A 2018, 6, 2742-2751.
50. Ji, P.; Feng, X.; Oliveres, P.; Li, Z.; Murakami, A.; Wang, C.; Lin, W., Strongly Lewis Acidic Metal–Organic Frameworks for Continuous Flow Catalysis. Journal of the American Chemical Society 2019, 141, 14878-14888.
51.Wan, X.; Wu, R.; Deng, J.; Nie, Y.; Chen, S.; Ding, W.; Huang, X.; Wei, Z., A metal–organic framework derived 3D hierarchical Co/N-doped carbon nanotube/nanoparticle composite as an active electrocatalyst for oxygen reduction in alkaline electrolyte. Journal of Materials Chemistry A 2018, 6, 3386-3390.
52.Wang, H.; Li, X.; Lan, X.; Wang, T., Supported ultrafine NiCo bimetallic alloy nanoparticles derived from bimetal–organic frameworks: a highly active catalyst for furfuryl alcohol hydrogenation. ACS Catalysis 2018, 8, 2121-2128.
53.Farzaneh, F.; Sadeghi, Y., Immobilized V-MIL-101 on modified Fe3O4 nanoparticles as heterogeneous catalyst for epoxidation of allyl alcohols and alkenes. Journal of Molecular Catalysis A: Chemical 2015, 398, 275-281.
54.Li, Q.; Jiang, S.; Ji, S.; Shi, D.; Li, H., Synthesis of magnetically recyclable MOF-5@ SiO 2@ Fe 3 O 4 catalysts and their catalytic performance of Friedel–Crafts alkylation. Journal of Porous Materials 2015, 22, 1205-1214.
55.Yang, M.; Hu, X.; Fang, Z.; Sun, L.; Yuan, Z.; Wang, S.; Hong, W.; Chen, X.; Yu, D., Bifunctional MOF‐Derived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters. Advanced Functional Materials 2017, 27, 1701971.
56.Ramezani, L.; Yahyazadeh, A.; Sheykhan, M., The First C− Cl Activation in Ullmann C− O Coupling by MOFs. ChemCatChem 2018, 10, 4636-4651.
57.Chen, H.; Gu, Z.-G.; Mirza, S.; Zhang, S.-H.; Zhang, J., Hollow Cu–TiO2/C nanospheres derived from a Ti precursor encapsulated MOF coating for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A 2018, 6, 7175-7181.
58.Roberts, M., Birth of the catalytic concept (1800-1900). Catalysis Letters 2000, 67, 1-4.
59.Kamphuis, A. J.; Milocco, F.; Koiter, L.; Pescarmona, P. P.; Otten, E., Highly selective single‐component formazanate ferrate (II) catalysts for the conversion of CO2 into cyclic carbonates. ChemSusChem 2019, 12, 3635-3641.
60.Wang, Q.; Astruc, D., State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chemical reviews 2019.
61.Hou, S. L.; Dong, J.; Zhao, B., Formation of C X Bonds in CO2 Chemical Fixation Catalyzed by Metal− Organic Frameworks. Advanced Materials 2020, 32, 1806163.
62.Xu, W.; Thapa, K. B.; Ju, Q.; Fang, Z.; Huang, W., Heterogeneous catalysts based on mesoporous metal–organic frameworks. Coordination Chemistry Reviews 2018, 373, 199-232.
63.Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K., Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium (II) and 4, 4''-bipyridine. Journal of the American Chemical Society 1994, 116, 1151-1152.
64.Cui, W.-G.; Zhang, G.-Y.; Hu, T.-L.; Bu, X.-H., Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coordination Chemistry Reviews 2019, 387, 79-120.
65.Ding, M.; Flaig, R. W.; Jiang, H.-L.; Yaghi, O. M., Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society reviews 2019, 48, 2783-2828.
66.Yu, C.-Y.; Chuang, H.-J.; Ko, B.-T., Bimetallic bis(benzotriazole iminophenolate) cobalt, nickel and zinc complexes as versatile catalysts for coupling of carbon dioxide with epoxides and copolymerization of phthalic anhydride with cyclohexene oxide. Catalysis Science & Technology 2016, 6, 1779-1791.
67.Sharma, N.; Dhankhar, S. S.; Kumar, S.; Kumar, T. D.; Nagaraja, C. M., Rational Design of a 3D MnII‐Metal–Organic Framework Based on a Nonmetallated Porphyrin Linker for Selective Capture of CO2 and One‐Pot Synthesis of Styrene Carbonates. Chemistry–A European Journal 2018, 24, 16662-16669.
68.Xiong, G.; Yu, B.; Dong, J.; Shi, Y.; Zhao, B.; He, L.-N., Cluster-based MOFs with accelerated chemical conversion of CO2 through C–C bond formation. Chemical Communications 2017, 53, 6013-6016.
69.Dai, L.; Xia, Z. H.; Gao, Y. Y.; Gao, Z. H.; Ye, S., Visible‐Light‐Driven N‐Heterocyclic Carbene Catalyzed γ‐and ϵ‐Alkylation with Alkyl Radicals. Angewandte Chemie International Edition 2019, 58, 18124-18130.
70.Zhang, G.; Yang, H.; Fei, H., Unusual Missing Linkers in an Organosulfonate-Based Primitive–Cubic (pcu)-Type Metal–Organic Framework for CO2 Capture and Conversion under Ambient Conditions. ACS Catalysis 2018, 8, 2519-2525.
71.Shaikh, A.-A. G.; Sivaram, S., Organic carbonates. Chemical reviews 1996, 96, 951-976.
72.Michan, A. L.; Parimalam, B. S.; Leskes, M.; Kerber, R. N.; Yoon, T.; Grey, C. P.; Lucht, B. L., Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation. Chemistry of Materials 2016, 28, 8149-8159.
73.Hossain, S. M.; Abidin, Z.; Asnawi, S.; Chowdhury, E. H., Krebs Cycle Intermediate-Modified Carbonate Apatite Nanoparticles Drastically Reduce Mouse Tumor Burden and Toxicity by Restricting Broad Tissue Distribution of Anticancer Drugs. Cancers 2020, 12, 161.
74.Kamphuis, A. J.; Picchioni, F.; Pescarmona, P. P., CO2-fixation into cyclic and polymeric carbonates: principles and applications. Green Chemistry 2019, 21, 406-448.
75.Chaugule, A. A.; Tamboli, A. H.; Kim, H., Ionic liquid as a catalyst for utilization of carbon dioxide to production of linear and cyclic carbonate. Fuel 2017, 200, 316-332.
76.Lawrenson, S. B.; Arav, R.; North, M., The greening of peptide synthesis. Green Chemistry 2017, 19, 1685-1691.
77.Ma, H.; Zeng, J.-j.; Tu, D.-h.; Mao, W.; Zhao, B.; Wang, K.; Liu, Z.-t.; Lu, J., 3-Bromo-1, 1, 1-trifluoro-2-propanol assisted chemical fixation of CO2 and epoxides. Tetrahedron Letters 2020, 151593.
78.Yadav, N.; Seidi, F.; Crespy, D.; D''Elia, V., Polymers Based on Cyclic Carbonates as Trait d''Union Between Polymer Chemistry and Sustainable CO2 Utilization. ChemSusChem 2019, 12, 724-754.
79.Huh, S., Direct Catalytic Conversion of CO2 to Cyclic Organic Carbonates under Mild Reaction Conditions by Metal—Organic Frameworks. Catalysts 2019, 9, 34.
80.Pal, T. K.; De, D.; Bharadwaj, P. K., Metal–organic frameworks for the chemical fixation of CO2 into cyclic carbonates. Coordination Chemistry Reviews 2020, 408, 213173.
81.Zhao, Z.-W.; Zhou, X.; Liu, Y.-N.; Shen, C.-C.; Yuan, C.-Z.; Jiang, Y.-F.; Zhao, S.-J.; Ma, L.-B.; Cheang, T.-Y.; Xu, A.-W., Ultrasmall Ni nanoparticles embedded in Zr-based MOFs provide high selectivity for CO 2 hydrogenation to methane at low temperatures. Catalysis Science & Technology 2018, 8, 3160-3165.
82.Hui, J.; Chu, H.; Zhang, W.; Shen, Y.; Chen, W.; Hu, Y.; Liu, W.; Gao, C.; Guo, S.; Xiao, G.; Li, S.; Fu, Y.; Fan, D.; Zhang, W.; Huo, F., Multicomponent metal–organic framework derivatives for optimizing the selective catalytic performance of styrene epoxidation reaction. Nanoscale 2018, 10, 8772-8778.
83.Ding, M.; Chen, S.; Liu, X. Q.; Sun, L. B.; Lu, J.; Jiang, H. L., Metal–Organic Framework‐Templated Catalyst: Synergy in Multiple Sites for Catalytic CO2 Fixation. ChemSusChem 2017, 10, 1898-1903.
84.Lin, L.; Liu, H.; Zhang, X., Flower-Like ZnO-Assisted One-Pot Encapsulation of Noble Metal Nanoparticles Supported Catalysts with ZIFs. Applied Surface Science 2018, 433, 602-609.
85.Nakatsuka, K.; Yoshii, T.; Kuwahara, Y.; Mori, K.; Yamashita, H., Controlled Pyrolysis of Ni‐MOF‐74 as a Promising Precursor for the Creation of Highly Active Ni Nanocatalysts in Size‐Selective Hydrogenation. Chemistry–A European Journal 2018, 24, 898-905.
86.Zhang, P.; Chen, C.; Kang, X.; Zhang, L.; Wu, C.; Zhang, J.; Han, B., In situ synthesis of sub-nanometer metal particles on hierarchically porous metal–organic frameworks via interfacial control for highly efficient catalysis. Chemical science 2018, 9, 1339-1343.
87.Shaikh, M. N.; Aziz, M. A.; Helal, A.; Kalanthoden, A. N.; Yamani, Z. H., PdNPs@ ZIF‐8 Micro‐Nanostructured Catalyst of Regioselective Mizoriki‐Heck Olefination. ChemistrySelect 2017, 2, 9052-9057.
88.Elumalai, P.; Mamlouk, H.; Yiming, W.; Feng, L.; Yuan, S.; Zhou, H.-C.; Madrahimov, S. T., Recyclable and Reusable Heteroleptic Nickel Catalyst Immobilized on Metal–Organic Framework for Suzuki–Miyaura Coupling. ACS applied materials & interfaces 2018, 10, 41431-41438.
89.Xie, W.; Wan, F., Basic ionic liquid functionalized magnetically responsive Fe3O4@ HKUST-1 composites used for biodiesel production. Fuel 2018, 220, 248-256.
90.Yang, H.; Bradley, S. J.; Chan, A.; Waterhouse, G. I.; Nann, T.; Kruger, P. E.; Telfer, S. G., Catalytically active bimetallic nanoparticles supported on porous carbon capsules derived from metal–organic framework composites. Journal of the American Chemical Society 2016, 138, 11872-11881.
91.Fang, X.; Shi, Y.; Wu, K.; Liang, J.; Wu, Y.; Yang, M., Upgrading of palmitic acid over MOF catalysts in supercritical fluid of n-hexane. RSC Advances 2017, 7, 40581-40590.
92.Tan, K.; Zuluaga, S.; Gong, Q.; Canepa, P.; Wang, H.; Li, J.; Chabal, Y. J.; Thonhauser, T., Water reaction mechanism in metal organic frameworks with coordinatively unsaturated metal ions: MOF-74. Chemistry of Materials 2014, 26, 6886-6895.
93.He, H.; Sun, Q.; Gao, W.; Perman, J. A.; Sun, F.; Zhu, G.; Aguila, B.; Forrest, K.; Space, B.; Ma, S., A stable metal–organic framework featuring a local buffer environment for carbon dioxide fixation. Angewandte Chemie International Edition 2018, 57, 4657-4662.
94.Cai, X.; Lin, J.; Pang, M., Facile synthesis of highly uniform Fe-MIL-88B particles. Crystal Growth & Design 2016, 16, 3565-3568.
95.Shao, J.; Wan, Z.; Liu, H.; Zheng, H.; Gao, T.; Shen, M.; Qu, Q.; Zheng, H., Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. Journal of Materials Chemistry A 2014, 2, 12194-12200.
96.An, Y.; Chen, M.; Xue, Q.; Liu, W., Preparation and self-assembly of carboxylic acid-functionalized silica. Journal of colloid and interface science 2007, 311, 507-513.
97.Mahalingam, V.; Onclin, S.; Péter, M.; Ravoo, B. J.; Huskens, J.; Reinhoudt, D. N., Directed self-assembly of functionalized silica nanoparticles on molecular printboards through multivalent supramolecular interactions. Langmuir 2004, 20, 11756-11762.
98.Arrua, R. D.; Peristyy, A.; Nesterenko, P. N.; Das, A.; D''Alessandro, D. M.; Hilder, E. F., UiO-66@SiO2 core–shell microparticles as stationary phases for the separation of small organic molecules. Analyst 2017, 142, 517-524.
99.Li, Y.-H.; Wang, S.-L.; Su, Y.-C.; Ko, B.-T.; Tsai, C.-Y.; Lin, C.-H., Microporous 2D indium metal–organic frameworks for selective CO 2 capture and their application in the catalytic CO 2-cycloaddition of epoxides. Dalton Transactions 2018, 47, 9474-9481.
100.Ratner, B. D.; Hoffman, A. S., CHAPTER I. 2.12 PHYSICOCHEMICAL SURFACE MODIFICATION OF MATERIALS USED IN MEDICINE. Biomaterials science: An introduction to materials in medicine 2012, 259.
101.Zhang, X.; Zheng, F.; Ye, L.; Xiong, P.; Yan, L.; Yang, W.; Jiang, B., A one-pot sol–gel process to prepare a superhydrophobic and environment-resistant thin film from ORMOSIL nanoparticles. RSC Advances 2014, 4, 9838-9841.
102.Joni, I.; Nulhakim, L.; Vanitha, M.; Panatarani, C. In Characteristics of crystalline silica (SiO2) particles prepared by simple solution method using sodium silicate (Na2SiO3) precursor, Journal of Physics: Conference Series, IOP Publishing: 2018; p 012006.
103.Park, H.; Reddy, D. A.; Kim, Y.; Ma, R.; Choi, J.; Kim, T. K.; Lee, K.-S., Zeolitic imidazolate framework-67 (ZIF-67) rhombic dodecahedrons as full-spectrum light harvesting photocatalyst for environmental remediation. Solid State Sciences 2016, 62, 82-89.
104.Yang, Q.; Ren, S.; Zhao, Q.; Lu, R.; Hang, C.; Chen, Z.; Zheng, H., Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chemical Engineering Journal 2018, 333, 49-57.
105.Panchariya, D. K.; Rai, R. K.; Anil Kumar, E.; Singh, S. K., Core–shell zeolitic imidazolate frameworks for enhanced hydrogen storage. ACS omega 2018, 3, 167-175.
106.Qin, J.; Wang, S.; Wang, X., Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Applied Catalysis B: Environmental 2017, 209, 476-482.
107.Yang, H.; Tang, Z.; Wang, K.; Wu, W.; Chen, Y.; Ding, Z.; Liu, Z.; Chen, S., Co@ Pd core-shell nanoparticles embedded in nitrogen-doped porous carbon as dual functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions. Journal of colloid and interface science 2018, 528, 18-26.
108.Zhang, S.; Deng, Q.; Li, Y.; Zheng, M.; Wan, C.; Zheng, C.; Tang, H.; Huang, F.; Shi, J., Novel amphiphilic polyvinylpyrrolidone functionalized silicone particles as carrier for low-cost lipase immobilization. Royal Society open science 2018, 5, 172368.
109.Son, W.-J.; Kim, J.; Kim, J.; Ahn, W.-S., Sonochemical synthesis of MOF-5. Chemical Communications 2008, 47, 6336-6338.
110.Mousavi, B.; Chaemchuen, S.; Moosavi, B.; Luo, Z.; Gholampour, N.; Verpoort, F., Zeolitic imidazole framework-67 as an efficient heterogeneous catalyst for the conversion of CO2 to cyclic carbonates. New Journal of Chemistry 2016, 40, 5170-5176.
111.Razali, M.; Didaskalou, C.; Kim, J. F.; Babaei, M.; Drioli, E.; Lee, Y. M.; Szekely, G., Exploring and exploiting the effect of solvent treatment in membrane separations. ACS applied materials & interfaces 2017, 9, 11279-11289.
112.Calo, V.; Nacci, A.; Monopoli, A.; Fanizzi, A., Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts. Organic letters 2002, 4, 2561-2563.
113.Senthilkumar, S.; Maru, M. S.; Somani, R. S.; Bajaj, H. C.; Neogi, S., Unprecedented NH2-MIL-101(Al)/n-Bu4NBr system as solvent-free heterogeneous catalyst for efficient synthesis of cyclic carbonates via CO2 cycloaddition. Dalton Transactions 2018, 47, 418-428.
114.Babu, R.; Kathalikkattil, A. C.; Roshan, R.; Tharun, J.; Kim, D.-W.; Park, D.-W., Dual-porous metal organic framework for room temperature CO2 fixation via cyclic carbonate synthesis. Green Chemistry 2016, 18, 232-242.
115.Fan, Y.; Li, J.; Ren, Y.; Jiang, H., A Ni (salen)‐Based Metal–Organic Framework: Synthesis, Structure, and Catalytic Performance for CO2 Cycloaddition with Epoxides. European Journal of Inorganic Chemistry 2017, 2017, 4982-4989.
116.Mousavi, B.; Chaemchuen, S.; Moosavi, B.; Zhou, K.; Yusubov, M.; Verpoort, F., CO2 Cycloaddition to Epoxides by using M‐DABCO Metal–Organic Frameworks and the Influence of the Synthetic Method on Catalytic Reactivity. ChemistryOpen 2017, 6, 674-680.
117.Kim, J.; Kim, S.-N.; Jang, H.-G.; Seo, G.; Ahn, W.-S., CO2 cycloaddition of styrene oxide over MOF catalysts. Applied Catalysis A: General 2013, 453, 175-180.
118.Zhang, Y.; Yin, S.; Luo, S.; Au, C. T., Cycloaddition of CO2 to epoxides catalyzed by carboxyl-functionalized imidazolium-based ionic liquid grafted onto cross-linked polymer. Industrial & engineering chemistry research 2012, 51, 3951-3957.
119.Jiang, X.; Gou, F.; Chen, F.; Jing, H., Cycloaddition of epoxides and CO2 catalyzed by bisimidazole-functionalized porphyrin cobalt(iii) complexes. Green Chemistry 2016, 18, 3567-3576.
120.Supasitmongkol, S.; Styring, P., A single centre aluminium(iii) catalyst and TBAB as an ionic organo-catalyst for the homogeneous catalytic synthesis of styrene carbonate. Catalysis Science & Technology 2014, 4, 1622-1630.
121. Zanon, A.; Chaemchuen, S.; Mousavi, B.; Verpoort, F., 1 Zn-doped ZIF-67 as catalyst for the CO2 fixation into cyclic carbonates. Journal of CO2 Utilization 2017, 20, 282-291.
122.Kuruppathparambil, R. R.; Jose, T.; Babu, R.; Hwang, G.-Y.; Kathalikkattil, A. C.; Kim, D.-W.; Park, D.-W., A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates. Applied Catalysis B: Environmental 2016, 182, 562-569.
123.Xu, W.; Wang, J.; Zhang, P.; Klomkliang, N.; Chaemchuen, S.; Verpoort, F., Hierarchical ZIFs@ Al2O3 composite materials as effective heterogeneous catalysts. Microporous and Mesoporous Materials 2020, 110009.
124.Sun, Y.; Jia, X.; Huang, H.; Guo, X.; Qiao, Z.; Zhong, C., Solvent-free mechanochemical route for the construction of ionic liquid and mixed-metal MOF composites for synergistic CO2 fixation. Journal of Materials Chemistry A 2020, 8, 3180-3185.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊