|
|
參考文獻葉乃菁,王玳琪,張嘉珍,吳騏,&賴志遠. (2009). 建構創新政策研究工具文字探勘之應用簡介. 國研科技(22),17–20.陳稼興,謝佳倫,&許芳誠. (2000). 以遺傳演算法為基礎的中文斷詞研究. 資訊管理研究, 2(2), 27–44.陈克寒,韩盼盼,&吴健.(2013). 基于用户聚类的异构社交网络推荐算法[JournalArticle].计算机学报,36(2),349359.林孟龍,張皓為,&張宗政. (2019). 以文字探勘技術探討旅遊地意象的探索研究: 以日本環球影城為例. 真理觀光學報(15),35–49.張云濤,&龔玲. (2007). 資料探勘原理與技術. 五南圖書出版股份有限公司.王台平,&古祐嘉. (2007). 以混合式技術改善文件聚類之精確度. 電子商務學報,9(4), 847–885.王熙哲,&丁耀民. (2008). 人際關係網路對虛擬社群使用意願的影響[JournalArticle]. 資訊管理學報,第五卷第一期.連結.謝佩璇,&張玨婷. (2017). 虛擬社群知識分享互動模式之研究以3d動畫設計軟體論壇為例. Information Management, 24(3), 245–272.萬榮水,梁瑞文,etal. (2007). 虛擬社群形成之意義及其衡量指標之探討: 以網路書店為例. 資訊社會研究,13,295–317.蔡至欣,賴玲玲,etal. (2011). 虛擬社群的資訊分享行為. InformationSharingoftheVirtual Community.林富美. (1997). 聯合報系的薪酬策略[JournalArticle]. 新聞學研究(54),269290.莊雅婷. (2000). 虛擬社群之經營. 臺灣師範大學工業科技教育學系學位論文,1–147.劉鼎康. (2005). 使用類神經網路進行垃圾郵件過濾之研究. 中原大學資訊管理研究所學位論文,1–87.陳嫻壎. (2005). 學習概念相關性之認知結構評量研究以資料聚類與形式概念為分析工具. 中原大學資訊工程研究所學位論文,1–102.蘇江鴻. (2005). 網際網路使用者對網路旅遊資訊要素的重視程度、資訊表現型態的滿意度及其影響因素研究-以易飛網為例[Thesis]. 世新大學觀光學研究所(含碩專班)碩士論文. Retrieved from https://hdl.handle.net/11296/gd8y7b李紹群. (2007). 以本文分析與階層式聚類為基礎之自動文件摘要系統[Thesis]. 中原大學電子工程研究所博士論文. Retrievedfromhttps://hdl.handle.net/11296/ zqwe65翁慈宗. (2009). 資料探勘的發展與挑戰. 科學發展月刊,第四百四十二期,第3239頁.蘇媺雅. (2009). 以正規化概念分析探討旅遊虛擬社群知識分享之研究[Thesis]. 國立屏東商業技術學院資訊管理系論文. Retrievedfromhttps://hdl.handle.net/11296/ qpsk39劉孟庭. (2009). K均值法聚類分類技術之研究. 朝陽科技大學資訊管理系學位論文, 1–50.陳羿龍. (2012). 中央銀行重要文告之文字雲分析. 世新大學財務金融學研究所(含碩專班)碩士論文. Retrievedfrom https://hdl.handle.net/11296/7w7w7j林聖訓. (2013). 運用詞頻分析技術於xbrl財報與附註關聯之研究以投資性不動產為例.中正大學資訊管理學系學位論文,1–70.李双良. (2014). 聚类分析法在医学上的应用研究. 电子世界(19),115–115.陳世榮. (2015). 社會科學研究中的文字探勘應用: 以文意為基礎的文件分類及其問題.人文及社會科學集刊,27(4),683–718.首香君. (2015). 虛擬社群知識分享對學習意願的影響以某軍資訊訓練中心為例. 中原大學資訊管理研究所學位論文,1–61.張惠茹. (2015). 旅遊虛擬社群參與者資訊分享及使用行為[Thesis]. 國立中興大學圖書資訊學研究所碩士論文.Retrievedfromhttps://hdl.handle.net/11296/66jpsa張恩騏. (2018). 建置能力導向教學評量視覺化模型—以兩門課程為例. 中原大學資訊工程研究所學位論文,1–47.楊長嘉. (2019). 應用類神經網路方法於新聞文件之意見持有者自動擷取. 臺灣師範大學資訊工程學系學位論文,1–65.蔡淳伊. (2019). 類神經網路技術於自動文件摘要之研究. 臺灣師範大學資訊工程學系學位論文.王嵩音,etal. (2007). 網路使用之態度,動機與影響. 資訊社會研究,12,57–85. Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: Asurveyofthestateoftheart and possible extensions. IEEETransactionsonKnowledge &Data Engineering(6), 734–749. Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Acm sigmod record (Vol. 22, pp. 207–216). Balabanović, M., & Shoham, Y. (1997). Fab: contentbased, collaborative recommendation. Communications of the ACM, 40(3), 66–72. Churchill, N. C., & Lewis, V. L. (1983). The five stages of small business growth [Journal Article]. Harvard business review, 61(3), 3050. Coenen, F., Goulbourne, G., & Leng, P. (2004, 01). Tree structures for mining association rules. Data Min. Knowl. Discov., 8, 2551. doi: 10.1023/B:DAMI.0000005257.93780.3b Cronin, J. J., & Taylor, S. A. (1992). Measuring service quality: A reexamination and exten sion [Journal Article]. Journal of Marketing, 56(3), 5568. Retrieved from https:// www.jstor.org/stable/1252296?origin=crossref doi: 10.2307/1252296Dai, M.C., et al. (2017). 以使用與滿足理論探討虛擬社群使用行為—以 [客家小吵] facebook 粉絲專頁為例. 國立中央大學客家政治經濟研究所碩士論文. Efraim, T. (2011). Decision support and business intelligence systems. Pearson Education India. Fayyad, U., PiatetskyShapiro, G., & Smyth, P. (1996). From data mining to knowledge dis covery in databases. AI Magazine, 17(3). Formica, A. (2006). Ontologybased concept similarity in formal concept analysis. Information sciences, 176(18), 2624–2641. Ghuman, S. S. (2016). Clustering techniquesa review. International Journal of Computer Science and Mobile Computing, 5(5), 524–530. Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61–70. Hafeez, K., & Alghatas, F. (2007). Knowledge management in a virtual community of practice using discourse analysis. Electronic Journal of Knowledge Management, 5(1). Hagel, J. (1999). Net gain: Expanding markets through virtual communities. Journal of inter active marketing, 13(1), 55–65. Hagel, J., & Armstrong, A. (1997). Net gain: expanding markets through virtual communities. harvard business school press. The McKinsey Quarterly. Han, J., Cai, Y., &Cercone, N. (1992). Knowledgediscoveryindatabases: Anattributeoriented approach. In Vldb (Vol. 18, pp. 574–559). Heskett, J. L., Jones, T. O., Loveman, G. W., Sasser, W. E., & Schlesinger, L. A. (1994). Putting the serviceprofit chain to work [Journal Article]. Harvard business review, 72(2), 164 174. Hirschman, E. C., & Holbrook, M. B. (1982). Hedonic consumption: emerging concepts, methods and propositions. Journal of marketing, 46(3), 92–101. Ho, C.I., Lin, M.H., & Chen, H.M. (2012). Web users'behavioural patterns of tourism information search: From online to offline. Tourism Management, 33(6), 1468–1482. Kaufmann, L., & Rousseeuw, P. (1987, 01). Clustering by means of medoids. Data Analysis based on the L1Norm and Related Methods, 405416. Krathwohl, D. R., &Anderson, L.W. (2009). Ataxonomyforlearning, teaching, andassessing: A revision of bloom’s taxonomy of educational objectives. Longman. Lee, K.F., Hon, H.W., & Reddy, R. (1990). An overview of the sphinx speech recognition system. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(1), 35–45. MacQueen, J., et al. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth berkeley symposium on mathematical statistics and probability (Vol. 1, pp. 281–297). Nasukawa, T., & Nagano, T. (2001). Text analysis and knowledge mining system. IBM systems journal, 40(4), 967–984. O’reilly, T. (2009). What is web 2.0. ”O’Reilly Media, Inc.”. Rheingold, H. (1993). The virtual community: Finding commection in a computerized world. AddisonWesley Longman Publishing Co., Inc. Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval [Book]. mcgrawhill. Stryker, S. B., & Leaver, B.L. (1997). Contentbasedinstruction in foreign language education: Models and methods. Georgetown University Press. Sumangali, K., & Ch, A. K. (2019). Concept lattice simplification in formal concept analysis using attribute clustering. Journal of Ambient Intelligence and Humanized Computing, 10(6), 2327–2343. Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 411–423. Ward, J. S., & Barker, A. (2013). Undefined by data: a survey of big data definitions. arXiv preprint arXiv:1309.5821. Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244. Wasko, M. M., Faraj, S., et al. (2005). Why should i share? examining social capital and knowledge contribution in electronic networks of practice. MIS quarterly, 29(1), 35–57. Wenger, E. C., & Snyder, W. M. (2000). Communities of practice: The organizational frontier. Harvard business review, 78(1), 139–146. Wille, R. (1992). Concept lattices and conceptual knowledge systems. Computers & mathe matics with applications, 23(69), 493–515. Wilson, L. O. (2016). Anderson and krathwohl–bloom's taxonomy revised. Understanding the New Version of Bloom’s Taxonomy. Yongjian, F. (1997). Data mining: tasks, techniques and applications. IEEE Potentials, 16(4), 18–20. Zeff, R. L., & Aronson, B. (1999). Advertising on the internet. John Wiley & Sons, Inc. |
| |
|
|
|
|