跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 20:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃芊芊
研究生(外文):Rahel Kaburuan
論文名稱:結合厭氧氨氧化與微藻除氨氮技術以實現脫氮和水循環
論文名稱(外文):Integration of Anammox and Microalgae Process for Nitrogen Removal and Water Circulation
指導教授:黃郁慈黃郁慈引用關係
指導教授(外文):Yu-Tzu Huang
學位類別:碩士
校院名稱:中原大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:76
中文關鍵詞:微藻類厭氧氨氧化廢水生物修復廢水處理
外文關鍵詞:MicroalgaeAnammox effluentBioremediationWastewater Treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在傳統的污水處理廠中,生物處理技術是污水處理過程中必不可少的部分。於污水處理廠處理的各種污染物中如氨氮有劇毒性,但以舊有氨氮處理技術所能處理的氨氮量不足以滿足新的法規標準。根據許多研究證明,微藻是一種可以用於廢水處理過程中的微生物,有效去除廢水中的氨氮。但是微藻對高濃度氨氮沒有足夠的耐受性。相較之下,厭氧氨氧化技術對氨氮濃度的允許值較微藻高。因此如果將兩組反應系統結合應用,可以進一步改善污水處理流程。於這項研究中,探討將微藻應用於厭氧氨氧化系統之出流水進行二次處理之可能性並評估了微藻在厭氧菌處理中的應用。研究的第一階段測試微藻的生長狀況和及亞硝酸鹽、氨的耐受性能力。在耐受性測試中,微藻顯示出能夠在亞硝酸鹽濃度200 ppm生長,且在500 ppm氨濃度和200 ppm亞硝酸鹽濃度下達到最佳生長狀態。第二階段,微藻類在厭氧氨氧化系統出流水中進行稀釋(1:1)和不稀釋的培養,在厭氧氨氧化系統出流水中稀釋(1:1)最後測試微藻濃度可達OD 680濃度為0.901,且水質分析數據可看出各項去除效率達到NO2--N,NO3--N,NH4+-N分別為78%、79%和65%,而無稀釋的厭氧氨氧化系統出流水中OD 680的高濃度為0.920,去除效率高NO2--N,NO3--N,NH4+-N為69%,59 %和69%。根據這些結果,證明可以使用厭氧氨氧化系統出流水進行微藻培養,並且可以結合使用厭氧氨化和微藻去除廢水的管理系統,以提高廢水中的脫氮效率。
In the traditional sewage treatment plant, biological treatment technology is an indispensable part of the sewage treatment process. Among all kinds of pollutants treated by sewage plants; ammonia nitrogen is highly toxic. The amount of ammonia nitrogen that the old ammonia nitrogen treatment technology can deal with is not enough to meet the new regulatory standards, the conventional methods of ammonia treatment have a strong footprint and a high level of operational sensitivity. Many studies have proved that Microalgae is a kind of microorganism that can use in the wastewater treatment process, and can remove ammonia nitrogen in wastewater. Still, Microalgae do not have enough tolerance to the high concentration of ammonia nitrogen. Compared with Microalgae , the allowable value of anaerobic ammonia oxidation (Anammox) technology for ammonia nitrogen concentration is relatively high. If the two reaction systems can be combined, it is possible to improve the sewage treatment process further. In this study, the possibility of applying Microalgae to the secondary treatment of anaerobic ammonia oxidation wastewater was discussing. This report evaluates anammox wastewater treatment using Microalgae , the first stage of the study examined the growth status and capacity of Microalgae to tolerate nitrite and ammonia in synthetic wastewater. Intolerance test, the Microalgae show the ability to grow up to 200 ppm in nitrite concentration and ammonia up to 500 ppm with the best growth performance at 50 ppm nitrite concentration and 200 ppm ammonia concentration. The second stage, Microalgae were the culture in anammox wastewater effluent with dilution (1:1) and without dilution, the high OD680 concentration in anammox with dilution (1:1) was 0.901 with high removal efficiency NO2--N, NO3--N, NH4+-N was 78%, 79% and 65%, respectively, while the high OD680 concentration in anammox without dilution was 0.920 with high removal efficiency NO2--N, NO3--N, NH4+-N was 69%, 59% and 69%, respectively. Based on these results, it shows that Microalgae can be cultured using anammox effluent wastewater, combining wastewater management systems for removal of nitrogen using anammox and Microalgae is possible to be made to improve the efficiency of nitrogen removal in wastewater.
摘要…………… i
Abstract ii
Acknowledgement iv
Table of Contents v
List of Table viii
List of Figure ix
I. Introduction 1
1.1. Background 1
1.2 Problem Statement 3
1.3 Objectives of the Study 4
1.4 Limitation of Study 4
1.5 Significant of Study 5
1.6 Research Framework 5
2. Literature review 6
2.1 Wastewater Treatment 6
2.1.1 Treatment and recycling of wastewater 6
2.2 Microalgae 12
2.2.1 Factors Affecting the Growth of Microalgae 13
2.2.2 Microalgae Growth 16
2.2.3 Wastewater Treatment with Microalgae 19
2.2.4 Microalgae Cultivation system 21
2.3 Anammox 22
2.3.1 Anammox Wastewater Treatment 23
2.4 Nitrogen Cycle 24
2.5 Nitrogen metabolism and assimilation 26
2.6 Wastewater treatment using Microalgae -bacterial systems 27
3. Material and Method 29
3.1. Microalgae cultures, medium, and chemicals 29
3.2 Identification Microalgae by DNA Sequencing 30
3.2.1 Microalgae DNA Extraction 30
3.2.2 PCR Amplification and Agarose Gel Electrophoresis 30
3.2.3 Sequencing DNA and BLAST Searches 31
3.3. Culture Condition and Experimental Procedures 31
3.3.1 Nitrite and Ammonium Microalgae Tolerance 32
3.3.2. Anammox Wastewater Effluent Experiment 34
3.4. Determination of Algae Growth and Dry Weight 35
3.5 Nutrient Analysis in Wastewater 36
3.6. Statistical Analysis 37
4. Result and Discussions 38
4.1 Microalgae Identification 38
4.2 Standard Curve Calculation 40
4.3 Tolerance of Chlorella sp. to NO2 44
4.4 Tolerance of Chlorella sp. to NH4 46
4.5 Growth Chlorella sp. in Annamox Effluent Wastewater in Initial Concentration 500 ppm and Water Quality 47
5. Conclusions 53
5.1 Conclusion 53
5.2 Suggestions 54
References 55

List of Table
Table 1 Composition of BG-II medium 29
Table 2 Composition of trace metal solution 29
Table 3 Composition of Synthetic wastewater 31
Table 4 Composition of Synthetic wastewater trace metal solution 32
Table 5 Characteristics of the Anammox Wastewater Effluent 35
Table 6 Nitrogen concentration of Anammox wastewater effluent before and after applying 49
Table 7 Efficiency removal analysis of Anammox wastewater effluent after the application of Chlorella sp 51

List of Figure
Figure 1 Research Flow Chart 5
Figure 2 Illustration wastewater recycling process 7
Figure 3 Growth phases of Algae cultures Source (53) 17
Figure 4 The essential role of Microalgae in wastewater treatment Source: (60) 20
Figure 5 The three most widely Algae setups configurations that are the most use Two figure above is open algae pond and closed tubular photobioreactor, and two figure below is flat panel and airlift generator Source (62) 22
Figure 6 Nitrogen transformation pathways mediated by various microorganisms Source (73) 25
Figure 7 The schematic flow chart of the experiment design to evaluate Microalgae tolerance and efficiency Microalgae culture in anammox wastewater effluent 33
Figure 8 (a) The design experiment and of Microalgae cultivation flask condition at incubator Microalgae (b) Schematic diagram of 500ml flasks Microalgae cultivation with air pump installed 34
Figure 9 PCR products for DNA sequencing to verify Microalgae species identification M – DNA marker (bp) 38
Figure 10 BLAST analysis Result of PCR analysis 39
Figure 11 The relationship between cell count and dry weight biomass of Chlorella spestablished by linear regression 42
Figure 12 Comparison NH4+-N in Manual Measurement (A1-E1) and Standard Curve (A2-E2) 43
Figure 13 Chlorella sp growth in different NO2 concentration(5ppm-200ppm) 45
Figure 14 Chlorella sp growth in different NH4+-N concentration (100ppm-500ppm) 47
Figure 15 Chlorella sp growth in synthetic wastewater (control), 50% and 100% anammox wastewater effluent for four days 48
Figure 16 Efficiency Nitrogen removal in anammox wastewater with dilution 50
Figure 17 Efficiency Nitrogen removal in anammox wastewater 51
1.Ramsundar P, Guldhe A, Singh P, Bux F. Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation. Bioresour Technol. 2017;227:82-92.
2.ATSDR. Public Health Statement for Nitrate and Nitrite. In: DEPARTMENT of HEALTH AND HUMAN SERVICES PHS, editor. Atlanta: Agency for Toxic Substances and Disease Registry; 2015.
3.Zia S, Dolfing J, Graham DW. Wastewater Treatment : Biological. Encyclopedia of Environmental Management2013.
4.Abdel-Raouf N, Al-Homaidan AA, Ibraheem IB. Microalgae and wastewater treatment. Saudi J Biol Sci. 2012;19(3):257-75.
5.Kadir WNA, Lam MK, Uemura Y, Lim JW, Lee KT. Harvesting and pre-treatment of Microalgae cultivated in wastewater for biodiesel production: A review. Energy Conversion and Management. 2018;171:1416-29.
6.LIU J-M, XU Y, LIU H, ZHU Z-R, QIAO S-Y. PILOT STUDY ON CHEMICAL INDUSTRIAL WASTEWATER IN TERTIARY TREATMENT WITH BIOFILM FOR WASHING BELTS. Environment Protection Engineering. 2011;37.
7.M. Z, M. D. The way of sampling as a factor influencing the quality of wastewater from laundry. Environ Prot Eng. 2008;2008(34).
8.J. Z, D P. Activity of nitrifying biofilm in the process of water treatment in diatomite bed. Environ Prot Eng. 2008;34.
9.Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S. Chemical treatment technologies for waste-water recycling—an overview. RSC Advances. 2012;2(16).
10.Tchobanoglous G, M FL, Carrie BE, Stensel. HD. Wastewater Engineering Treatment and Reuse ( Fourth Edition ).2011.
11.Federation WE. Liquid Stream Fundamentals: Sedimentation. Municipal Resource Recovery Design Committee; 2017.
12.Joshi M, Bansal R, Purwar R. Colour removal from textile effluents. Indian Journal of Fibre & Textile Research. 2004;29:239-59.
13.Bourke N, Carty G, O’Leary G, Crowe DM, Page. D. WATER TREATMENT MANUALS : COAGULATION, FLOCCULATION & CLARIFICATION. Ireland: ENVIRONMENTAL PROTECTION AGENCY; 2002.
14.Joss A, Zabczynski S, Gobel A, Hoffmann B, Loffler D, McArdell CS, et al. Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res. 2006;40(8):1686-96.
15.Joss A, Keller E, Alder AC, Gobel A, McArdell CS, Ternes T, et al. Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res. 2005;39(14):3139-52.
16.Barragán BE, Costa C, Carmen Márquez M. Biodegradation of azo dyes by bacteria inoculated on solid media. Dyes and Pigments. 2007;75(1):73-81.
17.Mittal A. Biological Wastewater Treatment. Water Today. 2011.
18.Fux C, Boehler M, Huber P, Brunner I, Siegrist H. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. Journal of Biotechnology 2002;99:295-306.
19.van der Zee FP, Villaverde S. Combined anaerobic-aerobic treatment of azo dyes--a short review of bioreactor studies. Water Res. 2005;39(8):1425-40.
20.Venkata Mohan S, Lalit Babu V, Sarma PN. Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): Effect of organic loading rate. Enzyme and Microbial Technology. 2007;41(4):506-15.
21.Boiling Points and Distillation [
22.Lu H, Wang J, Wang T, Wang N, Bao Y, Hao H. Crystallization techniques in wastewater treatment: An overview of applications. Chemosphere. 2017;173:474-84.
23.Bourestan NE, Banikhedmat A, Nezami SSR. Evaporation method for wastewater treatment as a new, economically affordable, environmentally sustainable and socially acceptable technique. Iranian Hydraulic Association. 2017.
24.Muralikrishna IV, Manickam V. Industrial Wastewater Treatment Technologies, Recycling, and Reuse. Environmental Management2017. p. 295-336.
25.Yoon J, Lee Y, Kim S. Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Water Science and Technology 2001;44:15-21.
26.Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D. Advanced oxidation processes for water treatment: advances and trends for R&D. Journal of Chemical Technology & Biotechnology. 2008;83(6):769-76.
27.Prieto-Rodriguez L, Miralles-Cuevas S, Oller I, Aguera A, Li Puma G, Malato S. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. J Hazard Mater. 2012;211-212:131-7.
28.JA HM, JM DR, E VSATR, C VdC, J A, J. PP. The photocatalytic disinfection of urban waste waters. Chemosphere. 2000;41:323-7.
29.Bellona C, Drewes JE, Xu P, Amy G. Factors affecting the rejection of organic solutes during NF/RO treatment--a literature review. Water Res. 2004;38(12):2795-809.
30.Ekowati Y, Msuya M, Salinas Rodriguez SG, Veenendaal G, Schippers JC, Kennedy MD. Synthetic organic polymer fouling in municipal wastewater reuse reverse osmosis. Journal of Water Reuse and Desalination. 2014;4(3):125-36.
31.Gupta VK, Jain R, Varshney S. Removal of Reactofix golden yellow 3 RFN from aqueous solution using wheat husk--An agricultural waste. J Hazard Mater. 2007;142(1-2):443-8.
32.Gupta VK, Jain R, Malathi S, Nayak A. Adsorption-desorption studies of indigocarmine from industrial effluents by using deoiled mustard and its comparison with charcoal. J Colloid Interface Sci. 2010;348(2):628-33.
33.Gupta VK, Agarwal S, Saleh TA. Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater. 2011;185(1):17-23.
34.Vargas G, Donoso-Bravo A, Vergara C, Ruiz-Filippi G. Assessment of Microalgae and nitrifiers activity in a consortium in a continuous operation and the effect of oxygen depletion. Electronic Journal of Biotechnology. 2016;23:63-8.
35.Grimaa EM, Belarbia E-H, Ferna´ndeza FGAn, Medinaa AR, Chistib Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances. 2003;20:491-515.
36.Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N. Biofuels from Microalgae . Biotechnol Programm. 2008;24:815-20.
37.Fukami K, Nishijima T, Ishida Y. Stimulative and inhibitory effects of bacteria on the growth of Microalgae . Hydrobiologia. 1997;358:185-91.
38.García M, Soto F, González JM, Bécares E. A comparison of bacterial removal efficiencies in constructed wetlands and algae-based systems. Ecological Engineering. 2008;32(3):238-43.
39.Wiley PE, Brenneman KJ, Jacobson AE. Improved Algal Harvesting Using Suspended Air Flotation. Water Environment Research. 2009;81(7):702-8.
40.Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, et al. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. BioEnergy Research. 2008;1(1):20-43.
41.Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews. 2010;14(1):217-32.
42.Greenwell HC, Laurens LM, Shields RJ, Lovitt RW, Flynn KJ. Placing Microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface. 2010;7(46):703-26.
43.Kumar K, Das D. Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors. Bioresour Technol. 2012;116:307-13.
44.Feng Y, Li C, Zhang D. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol. 2011;102(1):101-5.
45.Sirisansaneeyakul S, Singhasuwan S, Choorit W, Phoopat N, Garcia JL, Chisti Y. Photoautotrophic production of lipids by some Chlorella strains. Mar Biotechnol (NY). 2011;13(5):928-41.
46.Richmond A, Karg S, Boussiba S. Effects of Bicarbonate and Carbon Dioxide on the Competition between Chlorella vulgaris and Spirulina platensis. Plant & Cell Physiol. 1982;23(8):1411-7.
47.Zheng H, Gao Z, Zhang Q, Huang H, Ji X, Sun H, et al. Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris Chinese Journal of Biotechnology. 2011;2011(27):436-44.
48.Yeh K-L, Chang J-S, chen W-m. Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Engineering in Life Sciences. 2010;10(3):201-8.
49.Aishvarya V, Pradhan N, Nayak RR, Sukla LB, Mishra BK. Enhanced inorganic carbon uptake by Chlorella sp. IMMTCC-2 under autotrophic conditions for lipid production and CO2 sequestration. Journal of Applied Phycology. 2012;24(6):1455-63.
50.Devgoswami CR, Kalita MC, Talukdar J, Bora R, Sharma P. Studies on the growth behavior of Chlorella, Haematococcus and Scenedesmus sp. in culture media with different concentrations of sodium bicarbonate and carbon dioxide gas. African Journal of Biotechnology 2011;10(61):13128-38.
51.Lam MK, Lee KT. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Applied Energy. 2012;94:303-8.
52.Jacob-Lopes E, Scoparo CHG, Lacerda LMCF, Franco TT. Effect of light cycles (night/day) on CO2 fixation and biomass production by Microalgae in photobioreactors. Chemical Engineering and Processing: Process Intensification. 2009;48(1):306-10.
53.Amini Khoeyi Z, Seyfabadi J, Ramezanpour Z. Effect of light intensity and photoperiod on biomass and fatty acid composition of the Microalgae , Chlorella vulgaris. Aquaculture International. 2011;20(1):41-9.
54.Becker EW. Microalgae : biotechnology and microbiology. Cambridge, New York : : Cambridge University Press; 1994.
55.Cruz YR, Aranda DAG, Seidl PR, Diaz GC, Carliz RG, Fortes MM, et al. Cultivation Systems of Microalgae for the Production of Biofuels. Biofuels - State of Development2018.
56.Samori G, Samori C, Guerrini F, Pistocchi R. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural Microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Water Res. 2013;47(2):791-801.
57.Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by Microalgae : Status and prospects. Renewable and Sustainable Energy Reviews. 2013;19:360-9.
58.Di Termini I, Prassone A, Cattaneo C, Rovatti M. On the nitrogen and phosphorus removal in algal photobioreactors. Ecological Engineering. 2011;37(6):976-80.
59.Sperling Mv, Chernicharo CAdL. Urban wastewater treatment technologies and the implementation of discharge standards in developing countries. Urban Water. 2002;4:10-114.
60.Olguín E. Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnology Advances. 2003;22(1-2):81-91.
61.Ruiz J, Alvarez P, Arbib Z, Garrido C, Barragan J, Perales JA. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. Int J Phytoremediation. 2011;13(9):884-96.
62.Munoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 2006;40(15):2799-815.
63.Carvalho AP, Meireles LsA, Malcata FX. Microalgal Reactors: A Review of Enclosed System Designs and Performances. Biotechnol Programm. 2006;22(6).
64.Wang M, Keeley R, Zalivina N, Halfhide T, Scott K, Zhang Q, et al. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools. J Environ Manage. 2018;217:845-57.
65.Li J, Li J, Gao R, Wang M, Yang L, Wang X, et al. A critical review of one-stage anammox processes for treating industrial wastewater: Optimization strategies based on key functional microorganisms. Bioresour Technol. 2018;265:498-505.
66.Kuenen JG. Anammox bacteria: from discovery to application. Nature. 2008;6:320-6.
67.J. MS, Heijnen J, Kuenen JG, Jetten MSM. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol. 1998;50:589-96.
68.Szatkowska AB, Paulsrud B. The anammox process for nitrogen removal from wastewater – achievements and future challenges. 2014.
69.Yokota N, Watanabe Y, Tokutomi T, Kiyokawa T, Hori T, Ikeda D, et al. High-rate nitrogen removal from waste brine by marine anammox bacteria in a pilot-scale UASB reactor. Appl Microbiol Biotechnol. 2018;102(3):1501-12.
70.Casagrande CG, Kunz A, De Pra MC, Bressan CR, Soares HM. High nitrogen removal rate using ANAMMOX process at short hydraulic retention time. Water Sci Technol. 2013;67(5):968-75.
71.Carrera J, Baeza JA, Vicent T, Lafuente J. Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system. Water Research. 2003;37(17):4211-21.
72.Hauck M, Maalcke-Luesken FA, Jetten MSM, Huijbregts MAJ. Removing nitrogen from wastewater with side stream anammox: What are the trade-offs between environmental impacts? Resources, Conservation and Recycling. 2016;107:212-9.
73.Park H, Sundar S, Ma Y, Chandran K. Differentiation in the microbial ecology and activity of suspended and attached bacteria in a nitritation-anammox process. Biotechnol Bioeng. 2015;112(2):272-9.
74.Jetten MS, Niftrik L, Strous M, Kartal B, Keltjens JT, Op den Camp HJ. Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol Biol. 2009;44(2-3):65-84.
75.Guo J, Peng Y, Wang S, Ma B, Ge S, Wang Z, et al. Pathways and Organisms Involved in Ammonia Oxidation and Nitrous Oxide Emission. Critical Reviews in Environmental Science and Technology. 2013;43(21):2213-96.
76.SPOEHR HA, MILNER HW. The chemical composition of Chlorella; effect of
environmental conditions. Plant Physiol. 1949;24(1):120-49.
77.Forde BG. Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Biol. 2002;53:203-24.
78.Lam H-M, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. 47. 1996;1(569-593).
79.Hase T, Sch¨urmann P, Knaff DB. The Interaction of Ferredoxin with Ferredoxin-Dependent Enzymes. 2006. In: John H Golbeck (ed): Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase [Internet]. Springer; [477-98].
80.Rexach J, Fernández E, Galván A. The Chlamydomonas reinhardtii Nar1 Gene Encodes a Chloroplast Membrane Protein Involved in Nitrite Transport. The Plant Cell. 2000;12.
81.HOFF T, TRUONG H-N, CABOCHE M. The use of mutants and transgenic plants to study
nitrate assimilation. Plant Cell and Environmet. 1994;17:489-506.
82.Maza-Marquez P, Gonzalez-Martinez A, Rodelas B, Gonzalez-Lopez J. Full-scale photobioreactor for biotreatment of olive washing water: Structure and diversity of the Microalgae -bacteria consortium. Bioresour Technol. 2017;238:389-98.
83.Karya NG, van der Steen NP, Lens PN. Photo-oxygenation to support nitrification in an algal-bacterial consortium treating artificial wastewater. Bioresour Technol. 2013;134:244-50.
84.Huang YT, Su CP. High lipid content and productivity of Microalgae cultivating under elevated carbon dioxide. International Journal of Environmental Science and Technology. 2013;11(3):703-10.
85.Addgene. Agarose gel rlectrophoresis 2019 November 11 [Available from: https://www.addgene.org/protocols/gel-electrophoresis/.
86.Altschu SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. J Mol Biol. 1990;215:403-10.
87.Masojı´dek J, Torzillo G. Mass Cultivation of Freshwater Microalgae . Ecological Engineering Elsevier B.V. ; 2008. p. 2226.
88.Silva J, Alves C, Pinteus S, Reboleira J, Pedrosa R, Bernardino S. Chlorella. Nonvitamin and Nonmineral Nutritional Supplements2019. p. 187-93.
89.Huss VAR, Frank C, Hartmann EC, Hirmer M, Kloboucek A, Seidel BM, et al. Biochemical taxonomy and molecular
phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol. 1999;35:587-98.
90.Safi C, Zebib B, Merah O, Pontalier P-Y, Vaca-Garcia C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews. 2014;35:265-78.
91.Lam MK, Yusoff MI, Uemura Y, Lim JW, Khoo CG, Lee KT, et al. Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies. Renewable Energy. 2017;103:197-207.
92.Zhou W, Li Y, Min M, Hu B, Chen P, Ruan R. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour Technol. 2011;102(13):6909-19.
93.Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, et al. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol. 2010;162(4):1174-86.
94.Griffiths MJ, Garcin C, van Hille RP, Harrison ST. Interference by pigment in the estimation of microalgal biomass concentration by optical density. J Microbiol Methods. 2011;85(2):119-23.
95.Liang F, Du K, Wen X, Luo L, Geng Y, Li Y. The Effects of Physicochemical Factors and Cell Density on Nitrite Transformation in a Lipid-Rich Chlorella. J Microbiol Biotechnol. 2015;25(12):2116-24.
96.Abe K, Imamaki A, Hirano M. Removal of nitrate, nitrite, ammonium and phosphate ions from water by the aerial microalga Trentepohlia aurea. Journal of Applied Phycology. 2002;14:129-34.
97.Li T, Xu G, Rong J, Chen H, He C, Giordano M, et al. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases. J Plant Physiol. 2016;195:73-9.
98.María de Lourdes FM, María Dolores Josefina RR, Cuauhtémoc Ulises MM, Alfredo de Jesús MR. Tolerance and nutrients consumption of Chlorella vulgaris growing in mineral medium and real wastewater under laboratory conditions. Open Agriculture. 2017;2(1).
99.Krustok I, Diaz JG, Odlare M, Nehrenheim E. Algae biomass cultivation in nitrogen rich biogas digestate. Water Sci Technol. 2015;72(10):1723-9.
100.Lin L, Chan GY, Jiang BL, Lan CY. Use of ammoniacal nitrogen tolerant Microalgae in landfill leachate treatment. Waste Manag. 2007;27(10):1376-82.
101.OHMORI M, OHMORI K, STROTMANN H. Inhibition of Nitrate Uptake by Ammonia in a Blue-Green Alga, Anabaena cylindrica. Arch Microbiol. 1997;114:225-9.
102.Britto DT, Kronzucker HJ. NH4+ toxicity in higher plants: a critical review. J Plant Physiol. 2002;159:567-89.
103.Tan XB, Zhang YL, Yang LB, Chu HQ, Guo J. Outdoor cultures of Chlorella pyrenoidosa in the effluent of anaerobically digested activated sludge: The effects of pH and free ammonia. Bioresour Technol. 2016;200:606-15.
104.PRZYTOCKA-JUSIAK M, DUSZOTA M, MATUSIAK K, MYCIELSKI R. Intensive culture of Chlorella vulgaris/AA as the second stage of biological purification of nitrogen industry wastewaters. Water Research. 1984;18(1):1-7.
105.Kuo CM, Chen TY, Lin TH, Kao CY, Lai JT, Chang JS, et al. Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production. Bioresour Technol. 2015;194:326-33.
106.Singh P, Kumari S, Guldhe A, Misra R, Rawat I, Bux F. Trends and novel strategies for enhancing lipid accumulation and quality in Microalgae . Renewable and Sustainable Energy Reviews. 2016;55:1-16.
107.Zhang C, Zhang Y, Zhuang B, Zhou X. Strategic enhancement of algal biomass, nutrient uptake and lipid through statistical optimization of nutrient supplementation in coupling Scenedesmus obliquus-like Microalgae cultivation and municipal wastewater treatment. Bioresour Technol. 2014;171:71-9.
108.Klok AJ, Martens DE, Wijffels RH, Lamers PP. Simultaneous growth and neutral lipid accumulation in Microalgae . Bioresour Technol. 2013;134:233-43.
109.Collos Y, Harrison PJ. Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar Pollut Bull. 2014;80(1-2):8-23.
110.de-Bashan LE, Bashan Y. Immobilized Microalgae for removing pollutants: review of practical aspects. Bioresour Technol. 2010;101(6):1611-27.
111.Gao F, Peng YY, Li C, Yang GJ, Deng YB, Xue B, et al. Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater. Sci Total Environ. 2018;640-641:943-53.
112.Chen X, Li Z, He N, Zheng Y, Li H, Wang H, et al. Nitrogen and phosphorus removal from anaerobically digested wastewater by Microalgae cultured in a novel membrane photobioreactor. Biotechnol Biofuels. 2018;11:190.
113.Mukarunyana B, van de Vossenberg J, van Lier JB, van der Steen P. Photo-oxygenation for nitritation and the effect of dissolved oxygen concentrations on anaerobic ammonium oxidation. Sci Total Environ. 2018;634:868-74.
114.Manser ND, Wang M, Ergas SJ, Mihelcic JR, Mulder A, van de Vossenberg J, et al. Biological Nitrogen Removal in a Photosequencing Batch Reactor with an Algal-Nitrifying Bacterial Consortium and Anammox Granules. Environmental Science & Technology Letters. 2016;3(4):175-9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊