|
[1]Abdelhalim, K. (2013). Wireless neural recording and stimulation SOCS for monitoring and treatment of intractable epilepsy (Doctoral dissertation). [2]Brenna, S., Padovan, F., Neviani, A., Bevilacqua, A., Bonfanti, A., & Lacaita, A. L. (2016). A 64-Channel 965-μW Neural Recording SoC With UWB Wireless Transmission in 130-nm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(6), 528-532. [3]Molecular Biology of the Neuron R. Wayne Davies and Brian Morris. [4]Campbell Biology (11th Edition) (English) 11th, Lisa A. Urry (Author), Michael L. Cain (Author), Steven A. Wasserman (Author), Peter V. Minorsky (Author), Jane B. Reece (Author). [5]Modeling of the sEMG/Force relationship by data analysis of high-resolution sensor networks. [6]Harrison, R. R., & Charles, C. (2003). A low-power low-noise CMOS amplifier for neural recording applications. IEEE Journal of solid-state circuits, 38(6), 958-965. [7]Harrison, R. R., Kier, R. J., Chestek, C. A., Gilja, V., Nuyujukian, P., Ryu, S., ... & Shenoy, K. V. (2009). Wireless neural recording with the single low-power integrated circuit. IEEE transactions on neural systems and rehabilitation engineering, 17(4), 322-329. [8]Ruiz-Amaya, J., Rodriguez-Perez, A., & Delgado-Restituto, M. (2015). A low noise amplifier for neural spike recording interfaces. Sensors, 15(10), 25313-25335. [9]Abdelhalim, K., MacEachern, L., & Mahmoud, S. (2006, May). A nanowatt ADC for ultra low power applications. In 2006 IEEE International Symposium on Circuits and Systems (pp. 4-pp). IEEE. [10]Hedayati, R. (2011). A study of Successive Approximation Registers and implementation of an ultra-low-power 10-bit SAR ADC in 65nm CMOS technology. [11]Chandrakumar, H., & Marković, D. (2018). A 15.2-ENOB 5-kHz BW 4.5-μW Chopped CT ΔΣ-ADC for Artifact-Tolerant Neural Recording Front Ends. IEEE Journal of Solid-State Circuits, 53(12), 3470-3483. [12]Hirai, Y., Matsuoka, T., Tani, S., Isami, S., Tatsumi, K., Ueda, M., & Kamata, T. (2019). A Biomedical Sensor System With Stochastic A/D Conversion and Error Correction by Machine Learning. IEEE Access, 7, 21990-22001. [13]Wark, H. A. C., Sharma, R., Mathews, K. S., Fernandez, E., Yoo, J., Christensen, B., ... & Tathireddy, P. (2013). A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. Journal of neural engineering, 10(4), 045003. [14]A technique for implantation of a 3-dimensional penetrating electrode array in the modiolar nerve of cats and humans. [15]Luan, S., Liu, Y., Williams, I., & Constandinou, T. G. (2016, October). An event-driven SoC for neural recording. In 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS) (pp. 404-407). IEEE. [16]Park, S. Y., Cho, J., Lee, K., & Yoon, E. (2018). Dynamic power reduction in scalable neural recording interface using spatiotemporal correlation and temporal sparsity of neural signals. IEEE Journal of Solid-State Circuits, 53(4), 1102-1114. [17]Valtierra, J. L., Fiorelli, R., Delgado-Restituto, M., & Rodriguez-Vazquez, A. (2019, February). A Sub-µW Reconfigurable Front-End for Invasive Neural Recording. In 2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCARIS) (pp. 85-88). IEEE. [18]Jung, Y., Jeon, H., Lee, T., Seong, H. Y., Park, C., & Je, M. (2018, June). Technical Review: Neural Recording Circuits for Bidirectional Neural Interface. In 2018 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia) (pp. 206-212). IEEE. [19]Verma, N., & Chandrakasan, A. P. (2007). An ultra-low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes. IEEE Journal of Solid-State Circuits, 42(6), 1196-1205. [20]Verma, N., Kwong, J., Ramadass, Y. K., Daly, D. C., Sze, V., Ickes, N., & Chandrakasan, A. P. Low Voltage System Design for Highly Energy Constrained Applications. [21]Kardonik, O. (2013). A study of SAR ADC and implementation of 10-bit asynchronous design. [22]Kulkarni, M., Shingadi, M., & Kulkarni, G. H. (2014). 6-Bit Charge Scaling DAC and SAR ADC”. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3(12). [23]CMOS. Circuit Design, Layout, and Simulation. Third Edition. R. Jacob Baker. [24]Charge-based MOS transistor modeling: the EKV model for low-power and RF IC design / Christian Enz and Eric Vittoz. [25]Sub-threshold design for ultra-low-power systems / Alice Wang, Benton H. Calhoun, Anantha P. Chandrakasan. [26]Enz, C. C., Krummenacher, F., & Vittoz, E. A. (1995). An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog integrated circuits and signal processing, 8(1), 83-114. [27]Enhancing the performance of recycling folded cascode OpAmp in nanoscale CMOS through voltage supply doubling and design for reliability. [28]Abdelhalim, K., Kokarovtseva, L., Velazquez, J. L. P., & Genov, R. (2013). 915-MHz FSK/OOK wireless neural recording SoC with 64 mixed-signal FIR filters. IEEE Journal of Solid-State Circuits, 48(10), 2478-2493. [29]Chandrakasan, A. P., Verma, N., & Daly, D. C. (2008). Ultralow-power electronics for biomedical applications. Annual review of biomedical engineering, 10. [30]Bautista-Delgado, A. F. (2009). Design of an ultra-low voltage analog front end for an electroencephalography system (Doctoral dissertation, Université Joseph-Fourier-Grenoble I). [31]Chapin, J. K., & Moxon, K. A. (2000). Neural prostheses for restoration of sensory and motor function. CRC Press. [32]Dai, Z., Hu, H., Chen, Y., Ye, F., & Ren, J. (2018, August). A 12-Bit ENOB 8MHz BW noise-shaping SAR ADC Using High-Speed Switches. In 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 392-395). IEEE. [33]Hunt, R. (2014). Low Voltage CMOS SAR ADC Design. [34]Jeon, H., Bang, J. S., Jung, Y., Lee, T., Jeon, Y., Koh, S. T., ... & Je, M. (2018, November). A 3.9 μW, 81.3 dB SNDR, DC-coupled, Time-based Neural Recording IC with Degeneration R-DAC for Bidirectional Neural Interface in 180nm CMOS. In 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC) (pp. 91-92). IEEE. [35]Kim, S. J., Han, S. H., Cha, J. H., Liu, L., Yao, L., Gao, Y., & Je, M. (2019). A Sub- μW/Ch Analog Front-End for ∆-Neural Recording With Spike-Driven Data Compression. IEEE transactions on biomedical circuits and systems, 13(1), 1-14. [36]Kursu, Olli-Erkki, Micromotion compensation and a neural recording and stimulation system for electrophysiological measurements. University of Oulu Graduate School; the University of Oulu, Faculty of Information Technology and Electrical Engineering, Department of Electrical Engineering; Infotech Oulu Acta Univ. Oul. C 554, 2015. [37]Li, C., Chan, C. H., Zhu, Y., & Martins, R. P. (2018). Analysis of Reference Error in High-Speed SAR ADCs With Capacitive DAC. IEEE Transactions on Circuits and Systems I: Regular Papers, (99), 1-12. [38]Liu, M., van Roermund, A. H., & Harpe, P. (2019). A 10-b 20-MS/s SAR ADC With DAC-Compensated Discrete-Time Reference Driver. IEEE Journal of Solid-State Circuits, 54(2), 417-427. [39]Mao, W., Li, Y., Heng, C. H., & Lian, Y. (2018). A low power 12-bit 1-kS/s SAR ADC for biomedical signal processing. IEEE Transactions on Circuits and Systems I: Regular Papers, (99), 1-12. [40]Ranjandish, R., & Schmid, A. (2018, November). A 4-channel 5.04 μW 0.325 mm 2 Orthogonal Sampling-Based Parallel Neural Recording System. In 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC) (pp. 27-30). IEEE. [41]Santana, D., Hernandez, H., & Van Noije, W. (2019, February). A 1.8 V 9bit 10MS/s SAR ADC in 0.18 µm CMOS for bioimpedance analysis. In 2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCARIS) (pp. 53-56). IEEE. [42]Shulyzki, R., Abdelhalim, K., Bagheri, A., Salam, M. T., Florez, C. M., Velazquez, J. L. P., & Genov, R. (2015). 320-channel active probe for high-resolution neuromonitoring and responsive neurostimulation. IEEE transactions on biomedical circuits and systems, 9(1), 34-49. [43]Sooraj, V. S., & Joseph, G. M. (2018, June). Speed & Resolution Enhancement of 12-Bit SAR ADC. In 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 1655-1658). IEEE. [44]Thakur, A., & Agarwal, A. (2014). Low-Power Architectures and Self-Calibration Techniques of DAC for SAR-ADC implementation. International Journal of Innovative Research in Electrical, Electronics, Instrumentation, and Control Engineering, 2(3). [45]Tirunelveli Kanthi, S. (2010). Analysis and; design of successive approximation ADC and 3.5 GHz RF transmitter in 90nm CMOS (Doctoral dissertation, Georgia Institute of Technology). [46]Wirianto, K. (2016). Multi-Domain SystemC Model of a Neural Interface. [47]Wu, C., & Yuan, J. (2019). A 12-Bit, 300-MS/s Single-Channel Pipelined-SAR ADC With an Open-Loop MDAC. IEEE Journal of Solid-State Circuits. [48]Zhang, F., Holleman, J., & Otis, B. P. (2012). Design of ultra-low-power biopotential amplifiers for biosignal acquisition applications. IEEE transactions on biomedical circuits and systems, 6(4), 344-355.
|