跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 22:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃偉家
研究生(外文):Wei-Chia Huang
論文名稱:以單層過渡金屬硫化物為緩衝層於矽基板上利用濺鍍沉積氮化鋁之研究
論文名稱(外文):Deposition of AlN Thin Films on TMDC Using Low Temperture Sputtering
指導教授:高慧玲高慧玲引用關係
指導教授(外文):Hui-Ling Kao
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:55
中文關鍵詞:二硫化鉬二硫化鎢氮化鋁濺鍍
外文關鍵詞:MoS2WS2AlNsputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以不同單層過渡金屬硫化物(Transition Metal Dichalcogenide, TMDC),分別為二硫化鎢以及二硫化鉬於有氧化層之矽基板上作為緩衝層,利用其較小的晶格不匹配度及適配於氮化鋁(0002)面的對稱性,探討其對於沉積氮化鋁薄膜之結晶品質的效果。
氮化鋁薄膜結晶品質使用X光繞射量測,gonio scan量測結果顯示兩種TMDC緩衝層上之氮化鋁薄膜皆為從優取向,以ω scan量測AlN(0002)面之搖擺曲線並取其半高寬值,WS2緩衝層上之AlN薄膜半高寬數值依照製程參數的不同從1.2006°降低至0.3708°,MoS2緩衝層上之AlN薄膜半高寬數值依照製程參數的不同從0.9386°降低至0.3475°,並以TEM觀測其微觀結構,選區繞射圖顯示WS2緩衝層上之AlN薄膜為多晶,與φ scan結果相符,MoS2緩衝層上之AlN薄膜的選區繞射圖顯示為單晶,與φ scan結果不同,由於MoS2/SiO2/Si(100)基板上MoS2層並非大面積連續,故選區繞射圖顯示單晶應為只觀察微觀區域所致。
In this research, the aluminum nitride(AlN) thin films were deposited on SiO2/Si(100) substrates using transition metal dichalcogenide (TMDC) as buffer layer, which possess the same lattice symmetry and small lattice mismatch with AlN. Two kinds of TMDC, molybdenum disulfide(MoS2) and tungsten disulfide(WS2), prepared on SiO2/Si(100) were investigated. The surface roughness was measured by atomic force microscope(AFM). The crystalline quality of AlN thin films was analyzed by X-ray diffractometer(XRD) and the characteristics of microscopic structure was observed by transmission electron microscope (TEM).
The results of gonio scan shows AlN thin films deposited on MoS2 and WS2, respectively in this research, are all c-axis preferred orientation. The full width at half maximum(FWHM) of the AlN(0002) XRD rocking curve decreases dramatically with insertion of both TMDCs on SiO2/Si(100). The crystallinity of AlN films varied with the process conditions. The FWHM of optimized of AlN films on WS2/SiO2/Si(100) and MoS2/SiO2/Si(100) were 0.3708° grown at 500°C and 0.3475° at 400°C, respectively. TEM revealed that the AlN films grown on MoS2/SiO2/Si (100) exhibited single crystalline structure, seemingly better than that of film on WS2. However, the defects and the discontinuity of the TMDC films may have to be concerned.
目錄
中文摘要 I
Abstract II
誌謝辭 III
圖目錄 VI
表目錄 IX
第一章 導論 1
1-1 研究動機與目的 1
第二章 製程介紹 4
2-1 氮化鋁材料簡介 4
2-2 濺鍍原理 6
2-2-1 電漿 6
2-2-2 薄膜沉積原理 7
2-2-3 直流濺鍍與RF濺鍍 7
2-2-4 磁控濺鍍與Coil線圈 8
第三章 薄膜分析方法 10
3-1 原子力顯微鏡原理 10
3-2 X光繞射原理 11
3-2-1 X光繞射儀 11
3-2-2 Gonio scan 12
3-2-3 ω scan 13
3-2-4 φ scan 15
3-3 穿透式電子顯微鏡 16
第四章 實驗方式與結果討論 19
4-1 實驗方式 19
4-1-1 實驗流程 19
4-1-2 氮化鋁薄膜沉積 21
4-2 結果與討論 21
4-2-1 AlN薄膜表面粗糙度之分析 22
4-2-2 不同基板溫度對於AlN薄膜之gonio scan結果分析 24
4-2-3 有無使用TMDC緩衝層對於AlN薄膜之ω scan結果分析 25
4-2-4 不同濺鍍壓力對於AlN薄膜之ω scan結果分析 27
4-2-5 不同基板溫度對於AlN薄膜之ω scan結果分析 29
4-2-6 AlN薄膜之φ scan結果分析 33
4-2-7 穿透式電子顯微鏡量測結果分析 35
第五章 結論 42
第六章 未來展望 43
參考文獻 44

圖目錄
圖 二 1 氮化鋁纖鋅礦結構示意圖 5
圖 二 2 濺鍍系統示意圖 9
圖 三 1 AFM量測示意圖 11
圖 三 2 X光繞射示意圖 12
圖 三 3 Gonio scan示意圖 13
圖 三 4 ω scan示意圖 14
圖 三 5 φ scan示意圖 16
圖 三 6 TEM結構圖[24] 18
圖 四 1 實驗流程圖 20
圖 四 2 樣品結構圖 20
圖 四 3 XRD系統結構圖[25] 21
圖 四 4 WS2/SiO2/Si 2D AFM圖 22
圖 四 5 AlN/WS2/SiO2/Si 2D AFM圖 23
圖 四 6 MoS2/SiO2/Si 2D AFM圖 23
圖 四 7 AlN/MoS2/SiO2/Si 2D AFM圖 24
圖 四 8 AlN/TMDC/SiO2/Si(100) gonio scan圖 25
圖 四 9 AlN/TMDC/SiO2/Si(100)與AlN/SiO2/Si(100) ω scan圖 26
圖 四 10 基板溫度400°C下以MoS2做為緩衝層,不同濺鍍壓力之AlN ω scan圖 28
圖 四 11 基板溫度400°C下以WS2做為緩衝層,不同濺鍍壓力之AlN ω scan圖 28
圖 四 12 濺鍍壓力0.2Pa時以MoS2做為緩衝層,不同基板溫度之AlN ω scan圖 30
圖 四 13 濺鍍壓力0.2Pa時以WS2做為緩衝層,不同基板溫度之AlN ω scan圖 30
圖 四 14 濺鍍壓力0.15Pa時以MoS2做為緩衝層,不同基板溫度之AlN ω scan圖 32
圖 四 15 濺鍍壓力0.15Pa時以WS2做為緩衝層,不同基板溫度之AlN ω scan圖 32
圖 四 16 AlN/WS2/SiO2/Si(100) φ scan圖 34
圖 四 17 AlN/MoS2/SiO2/Si(100) φ scan圖 35
圖 四 18 AlN/WS2/SiO2/Si(100),AlN薄膜處選區繞射圖 36
圖 四 19 AlN/WS2/SiO2/Si(100),接面處選區繞射圖 37
圖 四 20 AlN/WS2/SiO2/Si(100),基板處選區繞射圖,Zone Axis = [011]Si 38
圖 四 21 AlN/MoS2/SiO2/Si(100),薄膜處選區繞射圖,Zone Axis = [2110]AlN 39
圖 四 22 AlN/MoS2/SiO2/Si(100),接面處選區繞射圖 40
圖 四 23 AlN/MoS2/SiO2/Si(100),基板處選區繞射圖,Zone Axis = [011]Si 41

表目錄
表 二 1 氮化鋁與其他材料之晶格不匹配度 5
表 四 1 TMDC與樣品之表面粗糙度 24
表 四 2 AlN/TMDC/SiO2/Si(100)與AlN/SiO2/Si(100)之AlN(0002)半高寬 27
表 四 3 基板溫度400°C下,不同濺鍍壓力、緩衝層之AlN(0002)半高寬 29
表 四 4 濺鍍壓力0.2Pa時,不同基板溫度、緩衝層之AlN(0002)半高寬 31
表 四 5 濺鍍壓力0.15Pa時,不同基板溫度、緩衝層之AlN(0002)半高寬 33
1.Shen, L., Heikman, S., Moran, B., Coffie, R., Zhang, N. Q., Buttari, D., ... & Mishra, U. K. (2001). AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron Device Letters, 22(10), 457-459.
2.Yue, Y., Hu, Z., Guo, J., Sensale-Rodriguez, B., Li, G., Wang, R., ... & Guo, S. (2012). InAlN/AlN/GaN HEMTs with regrown ohmic contacts and $ f_ {T} $ of 370 GHz. IEEE Electron Device Letters, 33(7), 988-990.
3.Huang, S., Jiang, Q., Yang, S., Zhou, C., & Chen, K. J. (2012). Effective passivation of AlGaN/GaN HEMTs by ALD-grown AlN thin film. IEEE Electron Device Letters, 33(4), 516-518.
4.Huang, X., Liu, Z., Li, Q., & Lee, F. C. (2013). Evaluation and application of 600 V GaN HEMT in cascode structure. IEEE Transactions on Power Electronics, 29(5), 2453-2461.
5.Mitova, R., Ghosh, R., Mhaskar, U., Klikic, D., Wang, M. X., & Dentella, A. (2014). Investigations of 600-V GaN HEMT and GaN diode for power converter applications. IEEE transactions on power electronics, 29(5), 2441-2452.
6.Grandusky, J. R., Smart, J. A., Mendrick, M. C., Schowalter, L. J., Chen, K. X., & Schubert, E. F. (2009). Pseudomorphic growth of thick n-type AlxGa1− xN layers on low-defect-density bulk AlN substrates for UV LED applications. Journal of crystal growth, 311(10), 2864-2866.
7.Nishida, T., Makimoto, T., Saito, H., & Ban, T. (2004). AlGaN-based ultraviolet light-emitting diodes grown on bulk AlN substrates. Applied physics letters, 84(6), 1002-1003.
8.Hirayama, H., Fujikawa, S., Noguchi, N., Norimatsu, J., Takano, T., Tsubaki, K., & Kamata, N. (2009). 222–282 nm AlGaN and InAlGaN‐based deep‐UV LEDs fabricated on high‐quality AlN on sapphire. physica status solidi (a), 206(6), 1176-1182.
9.Farvacque, J. L. (1996). Theoretical aspects of the minority carrier recombination at dislocations in semiconductors. Materials Science and Engineering: B, 42(1-3), 110-121.
10.Suihkonen, S., Svensk, O., Lang, T., Lipsanen, H., Odnoblyudov, M. A., & Bougrov, V. E. (2007). The effect of InGaN/GaN MQW hydrogen treatment and threading dislocation optimization on GaN LED efficiency. Journal of crystal growth, 298, 740-743.
11.Hikosaka, T., Yoshida, H., Sugiyama, N., & Nunoue, S. (2014). Reduction of threading dislocation by recoating GaN island surface with SiN for high‐efficiency GaN‐on‐Si‐based LED. physica status solidi (c), 11(3‐4), 617-620.
12.Feneberg, M., Leute, R. A., Neuschl, B., Thonke, K., & Bickermann, M. (2010). High-excitation and high-resolution photoluminescence spectra of bulk AlN. Physical Review B, 82(7), 075208.
13.Chen, Y., Zhang, Z., Jiang, H., Li, Z., Miao, G., & Song, H. (2018). The optimized growth of AlN templates for back-illuminated AlGaN-based solar-blind ultraviolet photodetectors by MOCVD. Journal of Materials Chemistry C, 6(18), 4936-4942.
14.Huang, W. C., Chu, C. M., Wong, Y. Y., Chen, K. W., Lin, Y. K., Wu, C. H., ... & Chang, E. Y. (2016). Investigations of GaN growth on the sapphire substrate by MOCVD method with different AlN buffer deposition temperatures. Materials Science in Semiconductor Processing, 45, 1-8.
15.Chung, R. B., Rodak, L. E., Enck, R. W., Sampath, A. V., Wraback, M., & Reed, M. L. (2016). Growth and impurity characterization of AlN on (0001) sapphire grown by spatially pulsed MOCVD. physica status solidi (a), 213(4), 851-855.
16.Reznik, R. R., Kotlyar, K. P., Soshnikov, I. P., Kukushkin, S. A., Osipov, A. V., Nikitina, E. V., & Cirlin, G. E. (2017, November). MBE growth and optical properties of GaN layers on SiC/Si (111) hybrid substrate. In Journal of Physics: Conference Series (Vol. 917, No. 3).
17.Tanaka, S., Kern, R. S., & Davis, R. F. (1995). Initial stage of aluminum nitride film growth on 6H‐silicon carbide by plasma‐assisted, gas‐source molecular beam epitaxy. Applied physics letters, 66(1), 37-39.
18.Yoshizawa, M., Kikuchi, A., Mori, M., Fujita, N., & Kishino, K. (1997). Growth of self-organized GaN nanostructures on Al2O3 (0001) by RF-radical source molecular beam epitaxy. Japanese journal of applied physics, 36(4B), L459.
19.Hsu, W. F., Lu, L. S., Kuo, P. C., Chen, J. H., Chueh, W. C., Yeh, H., ... & Chang, W. H. (2019). Monolayer MoS2 enabled single-crystalline growth of AlN on Si (100) using low-temperature helicon sputtering. ACS Applied Nano Materials, 2(4), 1964-1969.
20.J. H. Edgar and W. J. Meng, “Properties of Group III Nitrides”, INSPEC, The Institution of Electrical Engineers, London, 1994.
21.Goldberg, Y. (2001). Aluminum Nitride (AlN). Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe, 31-47.
22.Rubio, A., Corkill, J. L., Cohen, M. L., Shirley, E. L., & Louie, S. G. (1993). Quasiparticle band structure of AlN and GaN. Physical Review B, 48(16), 11810.
23.Fukumoto, S., Hookabe, T., & Tsubakino, H. (2000). Hydrolysis behavior of aluminum nitride in various solutions. Journal of materials science, 35(11), 2743-2748.
24.JEOL 2000FX 操作手冊
25.陳弘修,“以迴旋濺鍍法沉積氮化鋁薄膜及其矽摻雜之研究”,碩士論文,中原大學電子工程研究所,2012。
26.郭柏鈞 ,“以二硫化鉬為緩衝層低溫沉積單晶氮化鋁薄膜之研究”,碩士論文,中原大學電子工程研究所,2019。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊