跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 23:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋愈貴
研究生(外文):Yu-Kuei Sung
論文名稱:表面聲波傳感器之研製
論文名稱(外文):Design of Surface Acoustic Wave Transducer
指導教授:丁鏞
指導教授(外文):Yung Ting
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:91
中文關鍵詞:壓電陶瓷PZTPVDF高分子複合材料表面聲波傳感器非破壞性檢測
外文關鍵詞:Piezoceramic PZTPVDF polymer compositeSurface acoustic wave transducerNon-destructive detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.3 論文架構 13
第二章 表面聲波設計原理 14
2.1 前言 14
2.2 壓電效應(Piezoelectric effect) 15
2.2.1 正壓電效應(Direct Piezoelectric Effect) 15
2.2.2 逆壓電效應(Converse piezoelectric effect) 16
2.4 表面聲波原理 20
2.4.1 表面聲波概論 20
2.4.2 表面聲波工作原理 21
2.4.3 壓電材料選擇條件 22
2.4.4 指叉狀電極(Interdigital Transducer, IDT) 24
2.4.5 指叉狀電極(IDT)排列方式 26
2.5 表面聲波傳遞損失原因 28
2.6 蘭姆波(Lamb wave) 30
第三章 表面聲波傳感器設計分析與製作 33
3.1 表面聲波元件整體之結構 33
3.2 表面聲波傳感器之設計 34
3.3 表面聲波傳感器元件製作 39
第四章 實驗結果與討論 42
4.1 PZT與PVDF之表面聲波元件共振頻率之實際量測 43
4.2 PZT與PVDF之表面聲波元件頻寬量測與繪製 46
4.3 PZT與PVDF表面聲波傳感器之接收端量測結果 49
4.4 PZT與PVDF不同極化型態特性比較 51
4.5 使用Tone-burst驅動量測結果 54
4.6 Tone-burst進行非破壞性量測 56
第五章 結論與未來展望 64
5.1 結論 64
5.2 未來展望 66
參考文獻 70

圖目錄
圖1.1 對稱與非對稱蘭姆波示意圖 4
圖1.2 梳狀型傳感器(左圖)及指叉型傳感器(右圖) 9
圖2.1 極化前與極化後示意圖 15
圖2.2 正壓電效應示意圖 16
圖2.3 逆壓電效應示意圖 17
圖2.4 雷利波 (Rayleigh wave)示意圖 21
圖2.5 洛夫波 (Love wave)示意圖 21
圖2.6 表面聲波元件工作示意圖 22
圖2.7 IDT結構之參數定義示意圖 24
圖2.8 共振型表面聲波元件 27
圖2.9 延遲線型表面聲波元件 27
圖3.1 表面聲波傳感器之整體架構圖 33
圖3.2 PZT-相速度頻散曲線圖 36
圖3.3 PZT-群速度頻散曲線圖 36
圖3.4 PVDF-相速度頻散曲線圖 37
圖3.5 PVDF-群速度頻散曲線圖 37
圖3.6 壓電元件電極形式示意圖 41
圖4.1 PZT表面聲波傳感器 44
圖4.2 PVDF壓電薄膜表面聲波傳感器 44
圖4.3 PZT共振頻率量測圖 45
圖4.4 PVDF共振頻率量測圖 45
圖4.5 PZT表面聲波元件量測-30dB的頻寬 46
圖4.6 PZT-相速度頻散曲線圖-30dB的頻寬 47
圖4.7 PVDF表面聲波元件量測-30dB的頻寬 48
圖4.8 PVDF-相速度頻散曲線圖-30dB的頻寬 48
圖4.9 PZT接收端振幅示波圖 49
圖4.10 PVDF接收端振幅示波圖 50
圖4.11 PZT-表面極化之輸出電壓 52
圖4.12 PZT-厚度極化之輸出電壓 52
圖4.13 PVDF-表面極化之輸出電壓 53
圖4.14 PVDF-厚度極化之輸出電壓 53
圖4.15 Tone-burst振福量測-PZT 55
圖4.16 PZT表面聲波傳感器玻璃片模擬裂痕示意圖 56
圖4.17 PZT表面聲波傳感器量測前-玻璃片 57
圖4.18 PZT表面聲波傳感器量測後-玻璃片 57
圖4.19 模擬木板破損示意圖 58
圖4.20 PZT表面聲波傳感器量測前-木板 59
圖4.21 PZT表面聲波傳感器量測後-木板 59
圖4.22 鋁板模擬鋁板刮痕的情況 60
圖4.23 PZT表面聲波傳感器量測前-鋁板 60
圖4.24 PZT表面聲波傳感器量測後-鋁板 61
圖4.25 反射型表面聲波示意圖 62
圖4.26 反射型表面聲波測試圖 63
圖5.1 致動器與傳感器的局部坐標圖 67
圖5.2 致動器與傳感器之橢圓交點示意圖 68
圖5.3 左圖為複合材料(PVDF+PZT),右圖為性能輸出功能測試圖 69

表目錄
表3.1 PZT與PVDF材料設計參數表 35
表3.2 PZT材料參數 39
表4.1 三種不同測試材料之接收端振幅 61
[1]L. Rayleigh, “On waves propagated along the plane surface of an elastic solid,” Proc. London Math. Soc. Min. France, vol. 17, pp. 4-11, 1885.
[2]R. M. White, F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves,” Appl. Phys. Lett., vol. 7, pp. 314-316, 1965.
[3]L. Horace, “On waves in an elastic plate,” Proc. R. Soc. Lond. A, vol. 93, iss. 648, 1917.
[4]E. Moulin, J. Assaad, C. Delebarre, “Piezoelectric transducer embedded in a composite plate: application to Lamb wave generation,” Journal of Applied Physics, Vol. 82, No. 5, pp. 2049-2055, 1997.
[5]M. Rguiti, S. Grondel, F. E. youbi, C. Coutois, M. Lippert, A. Lericahe, “Optimized Piezoelectric Sensor for a Specific Application: Detection of Lamb Waves”, Sensors and Actuators A: Physical, vol. 126, iss. 2, pp. 362-368, 2006.
[6]J. L. Rose, “Guided wave nuances for ultrasonic nondestructive evaluation,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 47, No. 3, pp. 575–583, 2000.
[7]T. E. Parker, G. K. Montress, “Precision surface-acoustic-wave (SAW) oscillators,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 35, No. 3, pp. 342-364, 1988.
[8]D. Ciplys, R. Rimeika, M. S. Shur, S. Rumyantsev, “Visible–blind photoresponse of GaN-based surface acoustic wave oscillator,” Applied Physics Letters, Vol. 80, No. 11, pp. 2020-2022, 2002.
[9]W. D. Bowers, R. L. Chuan, T. M. Duong, “A 200 MHz surface acoustic wave resonator mass microbalance,” Review of Scientific Instruments, Vol. 62, No. 6, pp. 1624-1629, 1991.
[10]C. S. Hartmann, D. T. Bell, R. C. Rosenfeld, “Impulse Model Design of Acoustic Surface-Wave Filters,” IEEE Transactions on Microwave Theory and Techniques, Vol. 21, No. 4, pp. 162-175, 1973.
[11]R. H. Tancrell, M. G. Holland, “Acoustic surface wave filters,” Proceedings of the IEEE, Vol. 59, No. 3, pp. 393-409, 1971.
[12]D. C. Malocha, “Evolution of the SAW transducer for communication systems,” IEEE Ultrasonics Symposium, Vol. 1, pp. 302-310, 2004.
[13]S. J. Martin, A. J. Ricco, T. M. Niemczyk, G. C. Frye, “Characterization of SH acoustic plate mode liquid sensors,” Sensors and Actuators, Vol. 20, No. 3, pp. 253-268, 1989.
[14]S. Moon, T. Kang, J.-H. Lee, S.-W. Han, J.-S. Seo, K.-H. Im, J.-H. Park, J.-K. Na, “Interaction of acoustic surface waves induced by inter-digital transducer with wall thinning defect in pipe structure,” Journal of Mechanical Science and Technology, Vol. 32, No. 8, pp. 3569-3579, 2018.
[15]M. Benetti, D. Cannata, F. Di Pietrantonio, C. Marchiori, P. Persichetti, E. Verona, “Pressure sensor based on surface acoustic wave resonators,” Sensors, pp. 1024-1027, 2008.
[16]C. Caliendo, E. Verona, V. I. Anisimkin, “Surface acoustic wave humidity sensors: A comparison between different types of sensitive membrane,” Smart Materials and Structures, Vol. 6, No. 6, pp. 707-715, 1997.
[17]X. Le, X. Wang, J. Pang, Y. Liu, B. Fang, Z. Xu, C. Gao, Y. Xu, J. Xie, “A high performance humidity sensor based on surface acoustic wave and graphene oxide on AlN/Si layered structure,” Sensors and Actuators B: Chemical, Vol. 255, pt. 3, pp. 2454-2461, 2018.
[18]C. Déjous, D. Rebière, J. Pistré, C. Tiret, R. Planade, “A surface acoustic wave gas sensor: detection of organophosphorus compounds,” Sensors and Actuators B: Chemical, Vol. 24, No. 1-3, pp. 58-61, 1995.
[19]F. L. Degertekin, B. T. Khuri‐Yakub, “Single mode Lamb wave excitation in thin plates by Hertzian contacts,” Applied Physics Letters, Vol. 69, No. 2, pp. 146-148, 1996.
[20]F. L. Degertekin, B. T. Khuri‐Yakub, “Hertzian contact transducers for nondestructive evaluation,” The Journal of the Acoustical Society of America, Vol. 99, No. 1, pp. 299-308, 1996.
[21]S. Grondel, C. Delebarre, J. Assaad, C. A. Paget, K. Levin, “Modelling of Lamb wave generation for application in health monitoring of composite plates,” In 2001 IEEE Ultrasonics Symposium. Proceedings, Vol. 1, pp. 721-724, 2001.
[22]Y. Koyamada, S. Yoshikawa, “Coupled mode analysis of a long IDT,” Review of the Electrical Communication Laboratories, Vol. 27, No. 5-6, pp. 432-444, 1979.
[23]C. Wang, Z. Wang, T.-L. Ren, Y. Zhu, Y. Yang, X. Wu, H. Wang, H. Fang, L. Liu, “A micromachined piezoelectric ultrasonic transducer operating in d33 mode using square interdigital electrodes,” IEEE Sensors Journal, Vol. 7, No. 7, pp. 967-976, 2007.
[24]Y. Ting, Suprapto, A. Nugraha, C.-W. Chiu, H, Gunawan, “Design and characterization of one-layer PVDF thin film for a 3D force sensor,” Sensors and Actuators A: Physical, vol. 250, pp. 129-137, 2016.
[25]D. R. Mahapatra, A. Singhal, S. Gopalakrishnan, “Lamb wave characteristics of thickness-graded piezoelectric IDT,” Ultrasonics, Vol, 43, No. 9, pp. 736-746, 2005.
[26]B. Ren, C. Lissenden, “Phased array transducers for ultrasonic guided wave mode control and identification for aircraft structural health monitoring,” Materials Evaluation, Vol. 73, No. 8, pp. 1089-1100, 2015.
[27]T. Liu, M. Veidt, S. Kitipornchai, “Single Mode Lamb Waves in Composite Laminated Plates Generated by Piezoelectric Transducers,” Composite Structures, Vol. 58, No. 3, pp. 381-396, 2002.
[28]K. I. Salas, C. E. S. Cesnik, “Guided-wave excitation by a CLoVER transducer for structural health monitoring: theory and experiments,” Smart Materials and Structures, Vol. 18, No. 7, pp. 075005, 2009.
[29]L. Wang, F. G. Yuan, “Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments,” Composites science and technology, Vol. 67, No. 8, pp. 1370-1384, 2007.
[30]R. S. C. Monkhouse, P. D. Wilcox, P. Cawley, “Flexible interdigital PVDF transducers for the generation of Lamb waves in structures,” Ultrasonics, Vol. 35, No. 7, pp. 489-498, 1997.
[31]F. Bellan, A. Bulletti, L. Capineri, L. Masotti, G. G. Yaralioglu, L. F. Degertekin, B. T. Khuri-Yakub, F. Guasti, E. Rosi. “A new design and manufacturing process for embedded Lamb waves interdigital transducers based on piezopolymer film.” Sensors and Actuators A: Physical, Vol. 123–124, No. 23, pp. 379-387, 2005.
[32]C. A. Paget, K. Levin, C. Delebarre, “Behavior of an embedded piezoceramic transducer for Lamb wave generation in mechanical loading.” Proceeding of the SPIE Conference on Smart Structures and Integrated Systems, Vol. 3985, pp. 510-520, 2000.
[33]H. T. Banks, D. J. Inman, D. J. Leo, Y. Wang, “An experimentally validated damage detection theory in smart structure,” Journal of Sound and Vibration, Vol. 191, No. 5, pp. 859-880, 1996.
[34]Z. Jiang, K, Kabeya, S. Chonan, “Longitudinal wave propagation measuring technique for structural health monitoring,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 3668, pp. 343-350, 1999.
[35]Y. S. Roh, “Built-in diagnostics for identifying an anomaly in plates using wave scattering,” Ph. D. Dissertation, Stranford University, 1999.
[36]P. F. Pai, S. Jin, “Locating structural damage using operational deflection shapes,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 3985, pp. 271-282, 2000.
[37]F. Mattiocco, E. Dieulesaint, D. Royer, “PVF2 tranducers for Rayleigh waves.” Electronics Letters, Vol. 16, No. 7, pp. 250-251, 1980.
[38]T. R. Hay, J. L. Rose, "Flexible PVDF comb transducers for excitation of axisymmetric guided waves in pipe", Sensors and Actuators: Physical, Vol. 100, No. 1, pp. 18-23, 2002.
[39]S. Nasr, J. Duclos and M. Leduc, “PVDF transducers generating Scholte waves.” Electronics Letters, Vol. 24, No. 6, pp. 309-311, 1988.
[40]I. M. Daniel, S.-C. Wooh, J.-W. Lee, ‘‘Nondestructive evaluation of damage development in composite materials,’’ Elastic waves and ultrasonic nondestructive evaluation, pp. 183-189, 1990.
[41]B. Ren, C. J. Lissenden, “PVDF multi element Lamb wave sensor for structural health monitoring.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 63, No. 1, pp. 178-185, 2016.
[42]S. S. Kessler, “Piezoelectric-Based In-Situ Damage Detection in Composite Materials for Structural Health Monitoring Systems,” PhD Thesis. Massachusetts Institute of Technology, 2002.
[43]潘柏勳,壓電陣列激發圓管導波之設計及環境條件監測,碩士論文,台灣大學,台北市,2017
[44]郭佩菁,壓電薄膜系統與表面聲波元件之製作與量測,碩士論文,台灣大學,台北市,2001
[45]黃招喜,壓電陶瓷纖維複材平板導波特性的實驗及數值分析,碩士論文,交通大學,新竹市,2015
[46]袁有朋,以表面聲波為基礎設計之可撓式二氧化碳感測器,碩士論文,台南大學,台南市,2015
[47]陳勁希,具指叉電極壓電纖維複材導波換能器,碩士論文,交通大學,新竹市,2014
[48]曹莞皓,表面聲波元件應用在扭力感測器之製作測試與分析,碩士論文,大葉大學,彰化縣,2009
[49]J. Curie, P. Curie, “Développement par compression de l''électricité polaire dans les cristaux hémièdres à faces inclines,” Bulletin de Minéralogie, vol. 3, pp. 90-93, 1880.
[50]吳朗,電子陶瓷壓電,全新資訊圖書股份有限公司,83年
[51]T. Omori, K. Hashimoto, M. Yamaguchi, “PZT Thin Films for SAW and BAW Devices,” International symposium on acoustic wave devices for future mobile communication systems, pp. 263-8522, 2001, Japan.
[52]D. P. Morgan, “History of SAW Devices,” Proceedings of the 1998 IEEE International Frequency Control Symposium, pp. 439-460, 1998.
[53]W. R. Cook, and H. Jaffe, “Piezoelectric Ceramics,” Gould Inc. Cleveland, Ohio, U.S.A., 1971.
[54]J. M. Elson, J. M. Bennett. “Calculation of the power spectral density from surface profile data,” Applied Optics, Vol. 34, No. 1, pp. 201-208, 1995.
[55]J. L. Rose, S. P. Pelts, M. J. Quarry, “A comb transducer model for guided wave NDE,” Ultrasonics, Vol. 36, No. 1-5, pp. 163-169, 1998.
[56]K. Srinivasan, S. Cular, V. R. Bhethanabotla, S. Y. Lee, M. T. Harris, “Nanomaterial sensing layer based surface acoustic wave hydrogen sensors,” IEEE Ultrasonics Symposium, pp. 645-648, 2005.
[57]Campbell, Colin. Surface Acoustic Wave Devices for Mobile and Wireless Communications, Four-Volume Set. Academic press, 1998.
[58]H. Matthews, “Surface wave filters: Design, construction, and use”, John Wiley & Sons, 1979.
[59]Z. Su, M. Hong, “Nonlinear ultrasonics for health monitoring of aerospace structures using active sparse sensor networks.” In Structural Health Monitoring (SHM) in Aerospace Structures, pp. 353–392, 2016.
[60]P. Gómez, J. P. Fernández, P. D. García, “Lamb Waves and Dispersion Curves in Plates and its Applications in NDE Experiences Using Comsol Multiphysics.” Excerpt from proceedings of 2011 COMSOL Conference, 2011.
[61]H. Bjurström, N. Ryden, “Detecting the thickness mode frequency in a concrete plate using backward wave propagation.” The Journal of the Acoustical Society of America, vol. 139, pp. 649-657, 2016.
[62]M. Claudio, A step towards aberration corrections for transcranial ultrasound: Estimation of skull thickness and speed of sound, 2019.
[63]Victor. Giurgiutiu, Structural health monitoring: with piezoelectric wafer active sensors, Elsevier, 2007.
[64]Ballantine Jr, D. S., et al, Acoustic wave sensors: theory, design and physico-chemical applications, Elsevier, 1996.
[65]D. N. Alleyne, T. P. Pialucha, P. Cawley, “A signal regeneration technique for long-range propagation of dispersive Lamb waves,” Ultrasonics, Vol. 31, No. 3, pp. 201-204, 1993.
[66]V. Giurgiutiu, Wave Propagation SHM with PWAS Transducers, Structural Health Monitoring with Piezoelectric Wafer Active Sensors, 2014.
[67]H. C. So, F. K. W. Chan, W. Sun, “Subspace Approach for Fast and Accurate Single-Tone Frequency Estimation,” In IEEE Transactions on Signal Processing, Vol. 59, No. 2, pp. 827-831, 2011.
[68]G. Victor, S. E. Lyshevski, Micromechatronics: modeling, analysis, and design with MATLAB, CRC Press, 2016.
[69]S. Zhongqing, L. Ye, Identification of damage using Lamb waves: from fundamentals to applications. Springer Science & Business Media, 2009.
[70]J. B. Ihn, F. K. Chang, “Pitch-catch active sensing methods in structural health monitoring for aircraft structures.” Structural Health Monitoring, Vol. 7, No. 1, pp. 5-19, 2008.
電子全文 電子全文(全文開放日期20251231,本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top