[1]L. Rayleigh, “On waves propagated along the plane surface of an elastic solid,” Proc. London Math. Soc. Min. France, vol. 17, pp. 4-11, 1885.
[2]R. M. White, F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves,” Appl. Phys. Lett., vol. 7, pp. 314-316, 1965.
[3]L. Horace, “On waves in an elastic plate,” Proc. R. Soc. Lond. A, vol. 93, iss. 648, 1917.
[4]E. Moulin, J. Assaad, C. Delebarre, “Piezoelectric transducer embedded in a composite plate: application to Lamb wave generation,” Journal of Applied Physics, Vol. 82, No. 5, pp. 2049-2055, 1997.
[5]M. Rguiti, S. Grondel, F. E. youbi, C. Coutois, M. Lippert, A. Lericahe, “Optimized Piezoelectric Sensor for a Specific Application: Detection of Lamb Waves”, Sensors and Actuators A: Physical, vol. 126, iss. 2, pp. 362-368, 2006.
[6]J. L. Rose, “Guided wave nuances for ultrasonic nondestructive evaluation,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 47, No. 3, pp. 575–583, 2000.
[7]T. E. Parker, G. K. Montress, “Precision surface-acoustic-wave (SAW) oscillators,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 35, No. 3, pp. 342-364, 1988.
[8]D. Ciplys, R. Rimeika, M. S. Shur, S. Rumyantsev, “Visible–blind photoresponse of GaN-based surface acoustic wave oscillator,” Applied Physics Letters, Vol. 80, No. 11, pp. 2020-2022, 2002.
[9]W. D. Bowers, R. L. Chuan, T. M. Duong, “A 200 MHz surface acoustic wave resonator mass microbalance,” Review of Scientific Instruments, Vol. 62, No. 6, pp. 1624-1629, 1991.
[10]C. S. Hartmann, D. T. Bell, R. C. Rosenfeld, “Impulse Model Design of Acoustic Surface-Wave Filters,” IEEE Transactions on Microwave Theory and Techniques, Vol. 21, No. 4, pp. 162-175, 1973.
[11]R. H. Tancrell, M. G. Holland, “Acoustic surface wave filters,” Proceedings of the IEEE, Vol. 59, No. 3, pp. 393-409, 1971.
[12]D. C. Malocha, “Evolution of the SAW transducer for communication systems,” IEEE Ultrasonics Symposium, Vol. 1, pp. 302-310, 2004.
[13]S. J. Martin, A. J. Ricco, T. M. Niemczyk, G. C. Frye, “Characterization of SH acoustic plate mode liquid sensors,” Sensors and Actuators, Vol. 20, No. 3, pp. 253-268, 1989.
[14]S. Moon, T. Kang, J.-H. Lee, S.-W. Han, J.-S. Seo, K.-H. Im, J.-H. Park, J.-K. Na, “Interaction of acoustic surface waves induced by inter-digital transducer with wall thinning defect in pipe structure,” Journal of Mechanical Science and Technology, Vol. 32, No. 8, pp. 3569-3579, 2018.
[15]M. Benetti, D. Cannata, F. Di Pietrantonio, C. Marchiori, P. Persichetti, E. Verona, “Pressure sensor based on surface acoustic wave resonators,” Sensors, pp. 1024-1027, 2008.
[16]C. Caliendo, E. Verona, V. I. Anisimkin, “Surface acoustic wave humidity sensors: A comparison between different types of sensitive membrane,” Smart Materials and Structures, Vol. 6, No. 6, pp. 707-715, 1997.
[17]X. Le, X. Wang, J. Pang, Y. Liu, B. Fang, Z. Xu, C. Gao, Y. Xu, J. Xie, “A high performance humidity sensor based on surface acoustic wave and graphene oxide on AlN/Si layered structure,” Sensors and Actuators B: Chemical, Vol. 255, pt. 3, pp. 2454-2461, 2018.
[18]C. Déjous, D. Rebière, J. Pistré, C. Tiret, R. Planade, “A surface acoustic wave gas sensor: detection of organophosphorus compounds,” Sensors and Actuators B: Chemical, Vol. 24, No. 1-3, pp. 58-61, 1995.
[19]F. L. Degertekin, B. T. Khuri‐Yakub, “Single mode Lamb wave excitation in thin plates by Hertzian contacts,” Applied Physics Letters, Vol. 69, No. 2, pp. 146-148, 1996.
[20]F. L. Degertekin, B. T. Khuri‐Yakub, “Hertzian contact transducers for nondestructive evaluation,” The Journal of the Acoustical Society of America, Vol. 99, No. 1, pp. 299-308, 1996.
[21]S. Grondel, C. Delebarre, J. Assaad, C. A. Paget, K. Levin, “Modelling of Lamb wave generation for application in health monitoring of composite plates,” In 2001 IEEE Ultrasonics Symposium. Proceedings, Vol. 1, pp. 721-724, 2001.
[22]Y. Koyamada, S. Yoshikawa, “Coupled mode analysis of a long IDT,” Review of the Electrical Communication Laboratories, Vol. 27, No. 5-6, pp. 432-444, 1979.
[23]C. Wang, Z. Wang, T.-L. Ren, Y. Zhu, Y. Yang, X. Wu, H. Wang, H. Fang, L. Liu, “A micromachined piezoelectric ultrasonic transducer operating in d33 mode using square interdigital electrodes,” IEEE Sensors Journal, Vol. 7, No. 7, pp. 967-976, 2007.
[24]Y. Ting, Suprapto, A. Nugraha, C.-W. Chiu, H, Gunawan, “Design and characterization of one-layer PVDF thin film for a 3D force sensor,” Sensors and Actuators A: Physical, vol. 250, pp. 129-137, 2016.
[25]D. R. Mahapatra, A. Singhal, S. Gopalakrishnan, “Lamb wave characteristics of thickness-graded piezoelectric IDT,” Ultrasonics, Vol, 43, No. 9, pp. 736-746, 2005.
[26]B. Ren, C. Lissenden, “Phased array transducers for ultrasonic guided wave mode control and identification for aircraft structural health monitoring,” Materials Evaluation, Vol. 73, No. 8, pp. 1089-1100, 2015.
[27]T. Liu, M. Veidt, S. Kitipornchai, “Single Mode Lamb Waves in Composite Laminated Plates Generated by Piezoelectric Transducers,” Composite Structures, Vol. 58, No. 3, pp. 381-396, 2002.
[28]K. I. Salas, C. E. S. Cesnik, “Guided-wave excitation by a CLoVER transducer for structural health monitoring: theory and experiments,” Smart Materials and Structures, Vol. 18, No. 7, pp. 075005, 2009.
[29]L. Wang, F. G. Yuan, “Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments,” Composites science and technology, Vol. 67, No. 8, pp. 1370-1384, 2007.
[30]R. S. C. Monkhouse, P. D. Wilcox, P. Cawley, “Flexible interdigital PVDF transducers for the generation of Lamb waves in structures,” Ultrasonics, Vol. 35, No. 7, pp. 489-498, 1997.
[31]F. Bellan, A. Bulletti, L. Capineri, L. Masotti, G. G. Yaralioglu, L. F. Degertekin, B. T. Khuri-Yakub, F. Guasti, E. Rosi. “A new design and manufacturing process for embedded Lamb waves interdigital transducers based on piezopolymer film.” Sensors and Actuators A: Physical, Vol. 123–124, No. 23, pp. 379-387, 2005.
[32]C. A. Paget, K. Levin, C. Delebarre, “Behavior of an embedded piezoceramic transducer for Lamb wave generation in mechanical loading.” Proceeding of the SPIE Conference on Smart Structures and Integrated Systems, Vol. 3985, pp. 510-520, 2000.
[33]H. T. Banks, D. J. Inman, D. J. Leo, Y. Wang, “An experimentally validated damage detection theory in smart structure,” Journal of Sound and Vibration, Vol. 191, No. 5, pp. 859-880, 1996.
[34]Z. Jiang, K, Kabeya, S. Chonan, “Longitudinal wave propagation measuring technique for structural health monitoring,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 3668, pp. 343-350, 1999.
[35]Y. S. Roh, “Built-in diagnostics for identifying an anomaly in plates using wave scattering,” Ph. D. Dissertation, Stranford University, 1999.
[36]P. F. Pai, S. Jin, “Locating structural damage using operational deflection shapes,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 3985, pp. 271-282, 2000.
[37]F. Mattiocco, E. Dieulesaint, D. Royer, “PVF2 tranducers for Rayleigh waves.” Electronics Letters, Vol. 16, No. 7, pp. 250-251, 1980.
[38]T. R. Hay, J. L. Rose, "Flexible PVDF comb transducers for excitation of axisymmetric guided waves in pipe", Sensors and Actuators: Physical, Vol. 100, No. 1, pp. 18-23, 2002.
[39]S. Nasr, J. Duclos and M. Leduc, “PVDF transducers generating Scholte waves.” Electronics Letters, Vol. 24, No. 6, pp. 309-311, 1988.
[40]I. M. Daniel, S.-C. Wooh, J.-W. Lee, ‘‘Nondestructive evaluation of damage development in composite materials,’’ Elastic waves and ultrasonic nondestructive evaluation, pp. 183-189, 1990.
[41]B. Ren, C. J. Lissenden, “PVDF multi element Lamb wave sensor for structural health monitoring.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 63, No. 1, pp. 178-185, 2016.
[42]S. S. Kessler, “Piezoelectric-Based In-Situ Damage Detection in Composite Materials for Structural Health Monitoring Systems,” PhD Thesis. Massachusetts Institute of Technology, 2002.
[43]潘柏勳,壓電陣列激發圓管導波之設計及環境條件監測,碩士論文,台灣大學,台北市,2017[44]郭佩菁,壓電薄膜系統與表面聲波元件之製作與量測,碩士論文,台灣大學,台北市,2001[45]黃招喜,壓電陶瓷纖維複材平板導波特性的實驗及數值分析,碩士論文,交通大學,新竹市,2015[46]袁有朋,以表面聲波為基礎設計之可撓式二氧化碳感測器,碩士論文,台南大學,台南市,2015[47]陳勁希,具指叉電極壓電纖維複材導波換能器,碩士論文,交通大學,新竹市,2014[48]曹莞皓,表面聲波元件應用在扭力感測器之製作測試與分析,碩士論文,大葉大學,彰化縣,2009[49]J. Curie, P. Curie, “Développement par compression de l''électricité polaire dans les cristaux hémièdres à faces inclines,” Bulletin de Minéralogie, vol. 3, pp. 90-93, 1880.
[50]吳朗,電子陶瓷壓電,全新資訊圖書股份有限公司,83年
[51]T. Omori, K. Hashimoto, M. Yamaguchi, “PZT Thin Films for SAW and BAW Devices,” International symposium on acoustic wave devices for future mobile communication systems, pp. 263-8522, 2001, Japan.
[52]D. P. Morgan, “History of SAW Devices,” Proceedings of the 1998 IEEE International Frequency Control Symposium, pp. 439-460, 1998.
[53]W. R. Cook, and H. Jaffe, “Piezoelectric Ceramics,” Gould Inc. Cleveland, Ohio, U.S.A., 1971.
[54]J. M. Elson, J. M. Bennett. “Calculation of the power spectral density from surface profile data,” Applied Optics, Vol. 34, No. 1, pp. 201-208, 1995.
[55]J. L. Rose, S. P. Pelts, M. J. Quarry, “A comb transducer model for guided wave NDE,” Ultrasonics, Vol. 36, No. 1-5, pp. 163-169, 1998.
[56]K. Srinivasan, S. Cular, V. R. Bhethanabotla, S. Y. Lee, M. T. Harris, “Nanomaterial sensing layer based surface acoustic wave hydrogen sensors,” IEEE Ultrasonics Symposium, pp. 645-648, 2005.
[57]Campbell, Colin. Surface Acoustic Wave Devices for Mobile and Wireless Communications, Four-Volume Set. Academic press, 1998.
[58]H. Matthews, “Surface wave filters: Design, construction, and use”, John Wiley & Sons, 1979.
[59]Z. Su, M. Hong, “Nonlinear ultrasonics for health monitoring of aerospace structures using active sparse sensor networks.” In Structural Health Monitoring (SHM) in Aerospace Structures, pp. 353–392, 2016.
[60]P. Gómez, J. P. Fernández, P. D. García, “Lamb Waves and Dispersion Curves in Plates and its Applications in NDE Experiences Using Comsol Multiphysics.” Excerpt from proceedings of 2011 COMSOL Conference, 2011.
[61]H. Bjurström, N. Ryden, “Detecting the thickness mode frequency in a concrete plate using backward wave propagation.” The Journal of the Acoustical Society of America, vol. 139, pp. 649-657, 2016.
[62]M. Claudio, A step towards aberration corrections for transcranial ultrasound: Estimation of skull thickness and speed of sound, 2019.
[63]Victor. Giurgiutiu, Structural health monitoring: with piezoelectric wafer active sensors, Elsevier, 2007.
[64]Ballantine Jr, D. S., et al, Acoustic wave sensors: theory, design and physico-chemical applications, Elsevier, 1996.
[65]D. N. Alleyne, T. P. Pialucha, P. Cawley, “A signal regeneration technique for long-range propagation of dispersive Lamb waves,” Ultrasonics, Vol. 31, No. 3, pp. 201-204, 1993.
[66]V. Giurgiutiu, Wave Propagation SHM with PWAS Transducers, Structural Health Monitoring with Piezoelectric Wafer Active Sensors, 2014.
[67]H. C. So, F. K. W. Chan, W. Sun, “Subspace Approach for Fast and Accurate Single-Tone Frequency Estimation,” In IEEE Transactions on Signal Processing, Vol. 59, No. 2, pp. 827-831, 2011.
[68]G. Victor, S. E. Lyshevski, Micromechatronics: modeling, analysis, and design with MATLAB, CRC Press, 2016.
[69]S. Zhongqing, L. Ye, Identification of damage using Lamb waves: from fundamentals to applications. Springer Science & Business Media, 2009.
[70]J. B. Ihn, F. K. Chang, “Pitch-catch active sensing methods in structural health monitoring for aircraft structures.” Structural Health Monitoring, Vol. 7, No. 1, pp. 5-19, 2008.