(18.210.12.229) 您好!臺灣時間:2021/03/01 06:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:涂仁齊
研究生(外文):Ren-Qi TU
論文名稱:線上匹配式曲線誤差補償系統與整線自動化之研究
論文名稱(外文):Study of in-process matching error compensation for curve-type mating for a precision machining process
指導教授:陳夏宗陳夏宗引用關係王世明王世明引用關係
指導教授(外文):Shia-Chun ChenShih-Ming Wang
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:124
中文關鍵詞:曲線匹配誤差製程誤差誤差補償智能自動化
外文關鍵詞:Curve matching errorprocess errorerror compensationintelligent automation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於工業4.0的到來與物聯網的發展,使得在產線上提高精度與高效率的生產模式顯得更加可行。而其首先必須將生產資訊透明化,且能夠在機器間快速自動傳遞相關資訊,可即時掌控產線上的異常資訊並做及時的製程控到修正並提升加工精度與生產效率。將現經用到加工精度提升上時,則需可即時回傳加工製程匹配誤差,並做即時的補償,就達到智能誤差補償效果。針對曲線加工路徑進行研究,透過系統可從關鍵量測參數設定到誤差匹配補償都能線上有效完成,設計上也搭配自動化功能,可節省傳統匹配製程中的人力與時間,達到低成本快速量產的效果。具體研發整合(1)針對組裝匹配及製程匹配兩種模式建立線上匹配誤差計算及補償法;(2)透過線上自動檢測及加工程式自動修正方法作到線上快速加工誤差修正功能,使生產可依照匹配誤差及時生產出正確的匹配組裝件;(3)根據(1)(2)建立具備友善人機介面的電腦輔助誤差補償系統;(4)實機驗證,證明所建立的方法與系統的準確性及實用性。最後再經由實驗驗證可以得知: 本系統可依照量測件的誤差同時進行加工件的尺寸與幾何誤差的調整,在初次補償時尺寸誤差為0.377mm可以縮小到0.053mm以內,可提升85%,初次角度誤差為0.93∘修正後縮小至0.118∘以內,可提升87%,而再次進行複合式製程匹配初始誤差為0.183mm修正後縮小至0.028mm,誤差補償率更提升至82%。
Due to the arrival of Industry 4.0 and the development of the Internet of Things, it is more feasible to improve the precision and high efficiency of production mode on the production line. First of all, it must transparently produce production information, and can quickly and automatically transfer relevant information between machines, which can instantly control abnormal information on the production line and make timely process control to correct and improve processing precision and production efficiency. When the machining accuracy is increased, it is necessary to immediately return the machining process matching error and perform immediate compensation to achieve the intelligent error compensation effect. Research on the curve processing path, through the system can be effectively completed from the key measurement parameter setting to the error matching compensation, and the design is also equipped with automation function, which can save manpower and time in the traditional matching process, and achieve low-cost and fast mass production. Effect. Specific research and development integration(1) Establishing online matching error calculation and compensation method for the two methods of assembly matching set process matching; (2) Through the online automatic detection and automatic correction method of the processing program to make the online fast processing error correction function, so that the production can produce the correct matching assembly in time according to the matching error; (3) according to(1)(2) Establish a computer-aided error compensation system with a friendly human-machine interface.; (4) Real machine verification, proving the accuracy and practicability of the established method and system. Finally, it can be known through experimental verification: The system can simultaneously adjust the size and geometric error of the workpiece according to the error of the measuring component. In the initial compensation, the dimensional error is 0.377mm, which can be reduced to less than 0.053mm. The initial angle error is 0.93∘, and the correction is reduced to 0.118∘. However, the initial error of the composite process matching is 0.183mm, which is reduced to 0.028mm, and the error compensation rate is increased to 82%.
目錄
中文摘要.......................................................I
Abstract......................................................II
致謝.........................................................III
目錄..........................................................IV
圖目錄........................................................VI
表目錄.......................................................XII
第一章 緒論....................................................1
1.1 研究動機與目的............................................1
1.2 文獻回顧..................................................3
1.3 研究方法.................................................11
第二章 匹配式曲線誤差補償方法.................................13
2.1 關鍵節點數量選定方法.....................................15
2.2 量測方法.................................................15
2.3 擬合方法.................................................21
2.4 比對誤差方法.............................................22
2.5 NC 程式轉換誤差..........................................24
2.6 修正 NC 程式單節方法 .....................................27
2.7 儲存並自動上傳置匹配件機台的控制器內執行 .................29
第三章 整線自動化.............................................32
3.1 整線自動化架構...........................................32
V
3.2 整線自動化方法...........................................33
3.3 整線自動化串接模式.......................................34
第四章 軟體系統整合...........................................49
4.1 系統與設備流程架構.......................................49
4.2 系統設置.................................................50
4.3 誤差補償系統與自動化整合.................................54
第五章 實驗驗證...............................................60
5.1 實驗規劃.................................................60
5.2 實驗設備.................................................67
5.3 實驗驗證.................................................76
5.3.1 組裝匹配單一直線、三角型、曲線與綜合驗證 .............76
5.3.2 製程間直線、三角型與曲線綜合驗證 .....................98
第六章 結論與未來展望........................................105
6.1 結論....................................................105
6.2 未來展望................................................106
參考文獻.....................................................107
VI
圖目錄
圖 2-1 匹配式誤差補償流程圖 ...................................14
圖 2-2 直線示意圖 .............................................16
圖 2-3 角度示意圖 .............................................17
圖 2-4 角度為負示意圖 .........................................17
圖 2-5 三角型示意圖 ...........................................18
圖 2-6 曲線上的頂點示意圖 .....................................19
圖 2-7 量測座標的平移與旋轉 ...................................20
圖 2-8 曲線擬合示意圖 .........................................22
圖 2-9 補償示範圖 .............................................23
圖 2-10 組裝件示意圖 ..........................................24
圖 2-11 匹配件示意圖 ..........................................24
圖 2-12 未修正匹配件示意圖 ....................................25
圖 2-13 修正匹配件示意圖 ......................................25
圖 2-14 向量表示 ..............................................25
圖 2-15 不同方向向量 ..........................................26
圖 2-16 x 或 y 方向向量.........................................27
圖 2-17 API 系統架構...........................................30
圖 2-18 雙向溝通程式架構 ......................................31
圖 3-1 自動化運作架構圖 .......................................33
VII
圖 3-2 整線自動化運作流程圖 ...................................34
圖 3-3 CNC IO 端口.............................................35
圖 3-4 CNC Input 端口連接......................................35
圖 3-5 CNC Output 端口連接.....................................36
圖 3-6 Renishaw Equator 自動化 IO 模組 .........................37
圖 3-7 上銀手臂 Input 端口 .....................................38
圖 3-8 上銀手臂 Output 端口 ....................................38
圖 3-9 第七軸 Staubli 手臂 Input 端 .............................39
圖 3-10 第七軸 Staubli 手臂 Output 端 ...........................40
圖 3-11 程式碼 ................................................41
圖 3-12 C#與 IO 卡連接語法 ....................................41
圖 3-13 C#與軸卡連接語法 ......................................42
圖 3-14 安裝在系統 IO 卡 .......................................42
圖 3-15 安裝在系統軸卡 ........................................43
圖 3-16 Equator 量測儀連接主控電腦 Input 訊號 ...................43
圖 3-17 Equator 量測儀連接主控電腦 Output 訊號 ..................44
圖 3-18 CNC 銑床加工機連接主控電腦 Input 訊號 ...................44
圖 3-19 CNC 銑床加工機連接主控電腦 Output 訊號 ..................45
圖 3-20 上銀手臂連接主控電腦 Input 訊號 ........................45
圖 3-21 上銀手臂連接主控電腦 Output 訊號 .......................46
VIII
圖 3-22 料架感測器連接主控電腦 Input 訊號 ......................46
圖 3-23 料架感測器連接主控電腦 Output 訊號 .....................47
圖 3-24 第七軸 Staubli 機械手臂連接主控電腦 Input 訊號 ..........47
圖 3-25 第七軸 Staubli 機械手臂連接主控電腦 Output 訊號 .........48
圖 4-1 整體的系統架構圖 .......................................49
圖 4-2 系統的操作流程 .........................................50
圖 4-3 登入介面................................................50
圖 4-4 成功登入 ...............................................51
圖 4-5 選單選擇 ...............................................51
圖 4-6 系統設定介面 ...........................................52
圖 4-7 設定直線理想座標與單節設定 .............................52
圖 4-8 設定角度理想座標與單節設定 ..............................53
圖 4-9 設定曲線理想座標與單節設定 .............................53
圖 4-10 開啟補償程式 ..........................................54
圖 4-11 開啟補償介面 ..........................................55
圖 4-12 選擇組件種類 ..........................................55
圖 4-13 上傳置 CNC 控制器補償介面 ..............................56
圖 4-14 修改前後 NC 程式碼 .....................................56
圖 4-15 Equator 量測儀 IP 位址..................................57
圖 4-16 輸入 Equator 網路 IP ....................................58
IX
圖 4-17 成功連至量測站 ........................................58
圖 4-18 機台連接實體線路 ......................................59
圖 5-1 直線組合圖..............................................61
圖 5-2 直線組裝件 .............................................61
圖 5-3 直線匹配件 .............................................62
圖 5-4 三角形組合圖 ...........................................62
圖 5-5 三角形組裝件 ...........................................63
圖 5-6 三角形匹配件 ...........................................63
圖 5-7 曲線組合圖..............................................64
圖 5-8 曲線組裝件 .............................................64
圖 5-9 曲線匹配件 .............................................65
圖 5-10 綜合組合圖.............................................65
圖 5-11 綜合組裝件 ............................................66
圖 5-12 綜合匹配件 ............................................66
圖 5-13 直線、三角形與曲線 ....................................67
圖 5-14 楊鐵 YTM-763 CNC 铣床 ..................................68
圖 5-15 Renishaw Equator 300 比對儀 ............................70
圖 5-16 上銀 RA605.............................................72
圖 5-17 Stäubli RX160 .........................................72
圖 5-18 IO 卡 PCI-1202U ........................................73
X
圖 5-19 軸卡 MC8641P...........................................75
圖 5-20 量測件直線實際成品 ....................................78
圖 5-21 補償前加工件直線實際成品 ..............................78
圖 5-22 補償後加工件直線實際成品 ..............................79
圖 5-23 平面型補償前後比較圖 ..................................80
圖 5-24 量測件三角型實際成品 ..................................81
圖 5-25 補償前三角型實體加工件 ................................82
圖 5-26 補償後三角型實體加工件 ................................83
圖 5-27 三角型補償前後比較圖 ..................................83
圖 5-28 量測件曲線實際成品 ....................................85
圖 5-29 實際成品補償前曲線加工件 ..............................86
圖 5-30 補償前曲線擬合 ........................................88
圖 5-31 實際成品補償後曲線加工件 ..............................88
圖 5-32 補償後曲線擬合 ........................................90
圖 5-33 曲線補償前後比較圖 ....................................90
圖 5-34 綜合型量測件實際加工 ..................................92
圖 5-35 綜合型補償前實際加工 ..................................93
圖 5-36 補償前曲線擬合 ........................................95
圖 5-37 綜合型補償後實際加工 ..................................96
圖 5-38 補償前曲線擬合 ........................................98
XI
圖 5-39 綜合型補償前後比較圖 ..................................98
圖 5-40 理論工件示意圖 .......................................100
圖 5-41 綜合型補償前實際加工 .................................101
圖 5-42 補償前曲線擬合 .......................................102
圖 5-43 綜合型補償後實際加工 .................................103
圖 5-44 補償後曲線擬合 .......................................104
XII
表目錄
表 2-1 正規表示式特徵 .........................................28
表 3-1 Equator 點位表 .........................................37
表 5-1 YTM-763 規格表 .........................................68
表 5-2 Equator 300 規格表 .....................................70
表 5-3 上銀 RA605 規格表.......................................72
表 5-4 Stäubli RX160 規格表....................................72
表 5-5 IO 卡 PCI-1202U 規格表...................................73
表 5-6 軸卡 MC8641P 規格表.....................................75
表 5-7 實驗驗證切削條件-鋁 ....................................77
表 5-8 量測件直線 .............................................78
表 5-9 補償前加工件 ...........................................79
表 5-10 補償後加工件 ..........................................79
表 5-11 實驗驗證切削條件-鋁 ...................................80
表 5-12 量測件三角型 ..........................................81
表 5-13 三角型補償前加工件 ....................................82
表 5-14 三角型補償後加工件 ....................................83
表 5-15 實驗驗證切削條件-鋁 ...................................84
表 5-16 量測件曲線上 10 點座標 .................................85
表 5-17 補償前曲線加工件 10 點座標 .............................86
XIII
表 5-18 補償前轉換的座標 ......................................86
表 5-19 補償後曲線加工件 10 點座標 .............................88
表 5-20 補償後轉換的座標 ......................................88
表 5-21 實驗驗證切削條件-鋁 ...................................91
表 5-22 量測件點位的座標 ......................................92
表 5-23 補償前加工件點位的座標 ................................93
表 5-24 轉換補償前加工點位座標 ................................94
表 5-25 補償後加工件點位的座標 ................................96
表 5-26 轉換補償後加工件點位的座標 ............................97
表 5-27 實驗驗證切削條件-鋁 ...................................99
表 5-28 理論工件座標 .........................................100
表 5-29 補償前綜合型加工件座標 ...............................101
表 5-30 補償後綜合型加工件座標 ...............................103
參考文獻
[1]K.F. Eman and B.T. Wu, "A Generalized Geometric Error Model for Multi-Axis Machines", Annals of the CIRP, Vol.36, No.1, pp.253, 1987.
[2]V. S. B. Kiridena and P. M. Ferreira,”Mapping the Effects of Positioning Errors on the Volumetric Accuracy of Five-Axis CNC Machine Tools”,Int.J.Mach. Tools Manufact,Vol.33 No.3,pp.417-437. 1993.
[3]V. S. B. Kiridena and P. M. Ferreira, “Kinematic Modellng of Quasistatic Errors of Three-Axis Machining Centers”,Int. J. Mach. Tools Manufact, vol.34, pp.85-100,1994.
[4]P.D.Lin, K.F. Ehmann, "Direct Volumetric Error Evaluation for Multi-Axis Machines", Int J. Mach.Tools Manufact, Vol.33 No.3 pp.675-693, 1993.
[5]G. Fu, J. Fu, Y. Xu, Z. Chen, J. Lai,”Accuracy enhancement of five-axis machine tool based on differential motion matrix: Geometric error modeling, identification and compensation”, vol. 89, 170-181,2015.
[6]陳衍鴻,“高精度可變解析精微工具機之創新優化設計、誤差分析”, 私立中原大學機械工程學系博士論文,2012。
[7]Ming-Tzong Lin , Yi-Tsung Lee , Wen-Yuh Jywe , Jr-An Chen “Analysis and compensation of geometric error for five-axis CNC machine tools with titling rotary table”, International Conference on Advanced Intelligent Mechatronics (AIM2011), IEEE,2011
[8]Ferreira, P. M., and Liu, R. C., “A Method for Estimating and Compensating Quasistatic Errors of Machine Tools,” Journal of Engineering for Industry, Vol.115, 1993.
[9]Ni. J., Zhang, B. L., and Wu, S. M., “On-Line Identification of Volumetric Errors of Multi-Axis Machines,” Manufacturing International ‘88, Atlanta, 1988.
[10]Anjianappa, M., Anand D. K., Kirk. J. A., and Shyam S., “Error Correction Methodologies and Control Strategies for Numerical Control Machining,” Control Methods for Manufacturing Processes, ASME, Vol. 7, pp.41-49, 1988.
[11]Wang, S. M., and Ehmann, K. F., "Measurement Method for Position Error of a Multi-axis Machine-Part I:Principle and Sensitivity Analysis", International Journal of Machine Tools and Manufacture, Vol. 39, pp. 951-964, 1999.
[12]Wang, S. M., and Ehmann, K. F., "Measurement Method for Position Error of a Multi-axis Machine-Part Ⅱ:Applications and Experimental Results," International Journal of Machine Tools and Manufacture, Vol. 39, 1485-1505, 1999.
[13]W. T. Lei and Y. Y. Hsu,“Accuracy test of five-axis CNC machine tools with 3D probe-ball, part II: Errors estimation”, International Journal of Machine Tools &Manufacture, vol. 42, pp. 1163-1170, 2002.
[14]W. T. Lei and Y. Y. Hsu, “Accuracy enhancement of five-axis CNC machines through real-time error compensation”, International Journal of Machine Tools & Manufacture, vol. 43, 871-877, 2003.
[15]S. Ibaraki , T.Iritani , T. Matsushita,” Calibration of location errors of rotary axes on five-axis machine tools by on-the-machine measurement using a touch-trigger probe”, International Journal of Machine Tools & Manufacture, vol. 58,44-53,2012
[16]W. T. Lei, M. P. Sung, W. L. Lui, Y. C. Chuang, “Double ballbar test for the rotary axes of five-axis CNC machine tools”, International Journal of Machine Tools and Manufacture, vol. 47, pp. 273-285, 2007.
[17]C.Hong, S.Ibaraki , C.Oyama, ”Graphical presentation of error motions of rotary axes on a five-axis machine tool by static R-test with separating the influence of square ness errors of linear axes”, vol. 59, 24-33,2012.
[18]游涵任,”多軸工具機之體積誤差檢測系統與微細銑削精度提升技術之研究”,私立中原大學機械工程學系博士論文,2007。
[19]徐捷,”低成本CNC工具機內藏式精度校驗系統”,私立中原大學機械工程學系博士論文,2014。
[20]Shang peng , Xu anping , Zhang dawei “A DBB-based accuracy measurement method for rotary axes of high speed 5-axis CNC machining center”, School of Mechanical Engineering, Hebei University of Technology Tianjin, IEEE, 2010
[21]蘇保全,”MP700觸發式探頭整合於CNC工具機做自由曲面之加工間檢測與統計製程品管分析研究”,國立台灣科技大學機械工程學系碩士論文,2004。
[22]郝家駿,”OMP400觸發式探頭整合於四軸CNC雕刻機進行加工間檢測與避障問題之研究”,國立台灣科技大學機械工程學系碩士論文,2008。
[23]Q. Bi, N. Huang,C. Sun,Y. Wang, L. Zhu, H. Ding,“Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement”, International Journal of Machine Tools & Manufacture , vol. 89, 182-191,2015.
[24]”AxiSet Check-Up”軟體系統, RENISHAW ,2011
[25]Chunxia Lu , Qicheng Lao , Qiang Zhu , Jianhua Wang “Notice of Retraction 3D probe radius compensation in measurement of characterized curves of complex helicoidal surface”, International Conference on Mechanical and Electronics Engineering (ICMEE 2010),IEEE,2010
[26]Qiang Zhou , Qiushuang Zhang , Yanfei Yin “Error compensation analysis of the probe-radius of the online measurement device for joint internal thread”, School of Automation Science and Electrical Engineering Beihang University, Beijing 100191, China, IEEE,2016
[27]Gao Qi ,Zu Yingli ,Wan Jingui ,Zhang Fei “A New System for On-machine Measurement”, International Conference on Digital Manufacturing & Automation, IEEE, 2010
[28]Emre Karuc , Ergin Kilic , Melik Dolen “A measurement probe for coordinate measuring machines based on GMR technology”, Department of Mechanical Engineering, Middle East Technical University, IEEE, 2013
[29]Shih-Ming Wang and Ji-Jun Lin, 2013, “On-machine Volumetric-error Measurement and Compensation Method for Micro Machine Tools”, International Journal of Precision Engineering and Manufacturing, Vol. 14 / No. 6, pp. 989-994.
[30]Taotao Zhang , Zongpeng Wang , Jiangang Li “Geometric error identification and compensation of CNC machine tool based on KGM181”, International Conference on Information and Automation, IEEE, 2015
[31]Tim Claeys, Vladimir Volski,Guy A.E.Vandenbosch, Davy Pissoort “Near-Field Edge Extrapolation Using Auxiliary Dipoles to Improve Probe Compensation”, IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, IEEE,2017
[32]Zhen-yuan Jia, Jian-wei Ma, De-ning Song, Fu-ji Wang, Wei Liu “A review of contouring-error reduction method in multi-axis CNC machining”, International Journal of Machine Tools and Manufacture, vol. 125, 34-54, February 2018
[33]Ming Yang, Jixiang Yang, Han Ding “A two-stage friction model and its application in tracking error pre-compensation of CNC machine tools”, Precision Engineering, vol. 51, 426-436, January 2018
[34]Adam Wozniak, Michał Jankowski “Variable speed compensation method of errors of probes for CNC machine tools”, Precision Engineering, vol. 49, 316-321, July 2017
[35]Min Wan, Yang Liu, Weihong Zhang “A New Algorithm for the Identification of CNC Geometric Errors”, Procedia CIRP, vol. 55, 293-298, 2016
[36]Kaiguo Fana, Jianguo Yangb, Liyan Yangc “Unified error model based spatial error compensation for four types of CNC machining center: Part I—Singular function based unified error model”, Mechanical Systems and Signal Processing, vol.60-61, 656-667, August 2015
[37]T.N. Nghiepa, Ahmed A.D. Sarhanb, Hideki Aoyamac “Analysis of tool deflection errors in precision CNC end milling of aerospace Aluminum 6061-T6 alloy”, Measurement, vol. 125, 476-495, September 2018
[38]Dan Zhao, Yunbo Bi, Yinglin Ke, “An efficient error compensation method for coordinated CNC five-axis machine tools”, International Journal of Machine Tools and Manufacture, vol. 123, 105-115, December 2017
[39]Yuansheng Zhou, Zezhong Chevy Chen, Zixi Fang “Nonlinearity Error Analysis with the Application of the Envelope Surface in Five-axis CNC Machining”, IFAC-PapersOnLine, vol. 48, Issue 3, 675-679, 2015
[40]Shengyu Shi, Jing Lin, Xiufeng Wang, Xiaoqiang Xu “Analysis of the transient backlash error in CNC machine tools with closed loops”, International Journal of Machine Tools and Manufacture, vol. 93, 49-60, June 2015
[41]Jixiang Yang, Wu Ai, Yaxiong Liu “Kinematics model and trajectory interpolation algorithm for CNC turning of non-circular profiles”, Precision Engineering, 2018
[42]G.DinardoL,FabbianoG,Vacca “A smart and intuitive machine condition monitoring in the Industry 4.0 scenario”, Manufacture,vol.126,1-12,October 2018
[43]Manlong Chen “Compensation of thread profile distortion in image measuring screw thread” Manufacture,vol.129,582-588,December 2018
[44]Ksenia Ostrowska,Adam Gąska, Robert Kupiec, Kamila Gromczak, Paweł Wojakowski,Jerzy Sładek “Comparison of accuracy of virtual articulated arm coordinate measuring machine based on different metrological models” , Manufacture,vol,133,262-270,February 2019
[45]Kanglin Xing ,Sofiane Achiche,J.R.R.Mayer “Five-axis machine tools accuracy condition monitoring based on volumetric errors and vector similarity measures”, International Journal of Machine Tools and Manufacture,vol,138,80-93,March 2019
[46]Qingzhen Bia ,Nuodi Huangb ,Shaokun Zhanga ,Chaolin Shuaic,Yuhan Wanga “Adaptive machining for curved contour on deformed large skin based on on-machine measurement and isometric mapping” International Journal of Machine Tools and Manufacture,vol,136,34-44,January 2019
[47]Hong-Wei Huang,Meng-Shiun Tsai Ying-Che Huang “Modeling and elastic deformation compensation of flexural feed drive system” International Journal of Machine Tools and Manufacture,vol.132,96-112,September 2018
[48]Ming Yang,Jixiang Yang,Han Ding “A high accuracy on-line estimation algorithm of five-axis contouring errors based on three-point arc approximation” International Journal of Machine Tools and Manufacture,vol.130-131,73-84,August 2018
[49]Hao Tang a b Ji-an Duan b Qiancheng Zhao a “A systematic approach on analyzing the relationship between straightness & angular errors and guideway surface in precise linear stage” International Journal of Machine Tools and Manufacture,vol.120,12-19,September 2017
[50]Dan Zhao a b,Yunbo Bi a b ,Yinglin Ke a b “An efficient error compensation method for coordinated CNC five-axis machine tools”, International Journal of Machine Tools and Manufacture,vol.123.105-115,December 2017
[51]Zhen-yuan Jia,De-ning Song,Jian-wei Ma,Guo-qing Hu Wei-wei Su “A NURBS interpolator with constant speed at feedrate-sensitive regions under drive and contour-error constraints” International Journal of Machine Tools and Manufacture,vol.116.1-17,May 2017
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔