|
[1]D. O. Hebb, The Organization of Behavior. A Neuropsychological Theory. New York.: John Wiley & Sons, Inc, 1949. [2]F. Rosenblatt,''The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain,'' Cornell Aeronautical Laboratory, Psychological Review, Vol 65, No. 6, pp. 386-408, 1957. [3]D. Rumelhart, G. Hinton & R. Williams, ''Learning representations by back-propagating errors,'' Nature,Vol. 323, pp 533–536, 1986. [4]G. Hinton, & T . Sejnowski, ''A learning algorithm for boltzmann machines,'' Vol. 6088, No. 1, pp 147-169 ,1986. [5]Y. LeCun, L. Bottou, Y. Bengio & P. Haffner “Gradient-based learning applied to document recognition” Proceedings of the IEEE, Vol. 11, No. 86, pp 2278-2324 1998. [6]N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, & R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” The journal of machine learning research, Vol. 1, No. 15, pp. 1929-1958 2014. [7]Y. LeCun, Y. Bengio, & G. Hinton, “Deep learning,” Nature Publishing Group, Vol. 7553, No. 521, pp. 436-444, 2015. [8]W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, & A. Ber, “Ssd: Single shot multibox detector,” arXiv:1512.02325 [cs.LG], 2016. [9]J. Redmon, S. Divvala, R. Girshick, & A. Farhadi, “You only look once: Unified, real-time object detection,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779-788, 2016. [10]A. Ford, & A. Roberts, “Colour space conversions,” IEEE International Symposium on Industrial Electronics, pp. 6-25, 1998. [11]J. Sauvola, M. Pietikäinen, “Adaptive document image binarization,” Pattern recognition, pp. 225-236, 2000. [12]J. Weng, P. Choen, & M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Transaction on Pattern Analysis and Machine Intelligence, pp. 965-980, Vol. 14, No. 10, 1992. [13]P. Werbos, The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting, New York.: Wiley-Interscience, pp. 128-170, 1994. [14]“Machine / Deep Learning: Basics-Loss Function,” medium.com: @chih.sheng.huang821, Inc., Sep 27, 2018, retrieved from, https://medium.com/@chih.sheng.huang821, Sep 22,2019. [15]S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv:1609.04747v2 [cs.LG], 2017. [16]“gradient descent optimization algorithms,” medium.com: @chih.sheng.huang821, Inc., Jul 31, 2018, https://medium.com/@chih.sheng.huang821, Oct 8,2019. [17]“To Study Implementation of Gradient Descent for Multi-class Classification Using a SoftMax Regression and Neural Networks,” www.rpubs.com: leexiner, bigdata-final-project, Inc., Dec. 7, 2018. http://www.rpubs.com/leexiner/bigdata-final-project, Oct 16,2019. [18]“Object recognition algorithm recognized at a glance,” ithelp.ithome.com: articles, Inc., Oct 26, 2018, https://wywu.pixnet.net/blog/post/22481588, Nov 5,2019. [19]“Deep Learning Series: What is AP/mAP?,” medium.com: @chih.sheng.huang821, Inc., Sep. 14, 2018, https://medium.com/@chih.sheng.huang821, Nov 15,2019. [20]朱銘輝、彭增榮,類神經網路控制系統,台灣新北市:新文京開發出版有限公司,2010。 [21]劉立民,Python機器學習,台灣新北市:博碩文化股份有限公司,2010。 [22]林大貴,TensorFlow+Keras深度學習人工智能實務,台灣新北市:博碩文化股份有限公司,2017。 [23]齋藤康毅,Deep Learning 用 Python 進行深度學習基礎理論實作,台灣台北市:pp 12-26, 2017。 [24]Nikhil Buduma,Deep Learning 深度學習基礎,台灣新北市:碁峯資訊股份有限公司, 2018。 [25]鄧文淵,Python機器學習與深度學習特訓班,台灣新北市:碁峯資訊股份有限公司, 2019。
|