跳到主要內容

臺灣博碩士論文加值系統

(100.24.118.144) 您好!臺灣時間:2022/12/06 05:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱昶銘
研究生(外文):CHANG-MING CIOU
論文名稱:環境氣體對鈣鈦礦材料光激發螢光光譜之影響
論文名稱(外文):Effect of ambient gases on photoluminescence of perovskites
指導教授:許經夌趙宇強
指導教授(外文):JING-LING SYUYU-CIANG JHAO
學位類別:碩士
校院名稱:中原大學
系所名稱:奈米科技碩士學位學程
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:50
中文關鍵詞:鈣鈦礦太陽能電池
外文關鍵詞:MAPbBr3MABrPbBr2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,鈣鈦礦材料的效率於短時間內有卓越的成長,在太陽能電池的效率上,光電交換效率高達20%以上,加上製作成本不高,材料相較便宜,又可於常溫下備製,而因此受到矚目。目前最常見的組合為MAPbX3, X=Br and I 等鈣鈦礦結構組合,而鈣鈦礦的致命傷就是它無法接觸到水氣,水氣易造成鈣鈦礦的使用壽命縮短,因此需克服此問題,來延長鈣鈦礦的使用壽命。本論文研究先採用MABr與PbBr2作為單體原料,合成出MAPbBr3的聚合物,藉由刮刀塗佈(scraper)、旋轉塗佈(spin)及加熱析出固體(solid)的方式來製造出MAPbBr3的結晶結構晶體,並利用XRD進行結構結晶量測。利用光激發螢光光譜觀察,在不同環境(氣體)下,對於MAPbBr3的光激發螢光強度影響。由結果討論可以發現,在XRD結構鑑定的量測中,可以得知本實驗室所合成的MAPbBr3均出現100、200及300的主要峰值,且得出以加熱析出的方式所得固體(solid)的結晶強度最為高;用光激發螢光光譜於不同環境下的量測中,氧氣的環境可以得到較高的光激發螢光強度。由此可以推論出環境氣體的影響,不僅能幫助樣品提升效率,甚至可以達到彌補樣品表面缺陷,加以得到更好的效率。
In recent years, the efficiency of perovskite materials has grown significantly in a short period of time. In terms of solar cell efficiency, the photoelectric conversion efficiency is more than 20%. In addition, the production cost is not expensive, the material is relatively cheap, and it can be produced in Room temperature. So it has attracted more and more attention. At present, the most common perovskite structure combinations are MAPbX3, X = Br and I, etc. The fatal injury of perovskite is that it cannot contact water vapor, which can easily shorten the life of perovskite. Therefore, we need to overcome this problem to extend the life of perovskite. In this thesis, MAPbBr3 polymer was synthesized using MABr and PbBr2 as monomer raw materials. The crystal structure crystals of MAPbBr3 are produced by scraper coating, spin coating and heating to deposit solids. And, the structure crystallization test was performed by XRD. PL (Photoluminescence) was used to observe the effect of light absorption on MAPbBr3 under different ambient gases. From the discussion of the results, it can be found from the XRD structural identification tests that the MAPbBr3 synthesized in this laboratory all showed major peak values of 100, 200, and 300. It can also be seen that the solid obtained by heating precipitation has the highest crystal strength. Using PL measurement in different environments, the environment with oxygen can get higher photoexcitation intensity. It can be inferred that the influence of ambient gas can not only help the sample to improve the efficiency, but also can make up for its surface defects and get better efficiency.
目錄
摘要...................................................................................................................................I
ABSTRACT .........................................................................................................................II
目錄.................................................................................................................................III
圖目錄 ............................................................................................................................. V
表目錄 ............................................................................................................................ VI
第一章 緒論...................................................................................................................1
1.1 前言..................................................................................................................................1
1.2 能源發展..........................................................................................................................2
1.3 太陽能電池......................................................................................................................4
1.4 動機與目的......................................................................................................................8
第二章 文獻探討............................................................................................................9
2.1 鈣鈦礦..............................................................................................................................9
2.2 光激發螢光光譜(Photoluminescence, PL)………….……………………………………..……. 11
2.3 輻射複合........................................................................................................................14
第三章 實驗.................................................................................................................17
3.1 實驗流程圖....................................................................................................................17
3.2 實驗材料 ………………………………………………………………..…………………………………………….. 18
3.3 實驗製程........................................................................................................................19
3.4 實驗量測........................................................................................................................20
3.5 實驗設備........................................................................................................................20
3.6 實驗器材........................................................................................................................21
第四章 結果討論..........................................................................................................22
4.1 XRD 結構鑑定 ..............................................................................................................22
4.2 MPB 光激發螢光光譜量測 .........................................................................................24
4.2.1 大氣環境下光激發螢光光譜量測 ........................................................................24
4.2.2 氮氣環境下光激發螢光光譜量測 ........................................................................27
4.2.3 真空環境下光激發螢光光譜量測 ........................................................................30
4.2.4 氧氣環境下光激發螢光光譜量測 ........................................................................33
4.2.5 相同樣品在不同環境下的光激發螢光光譜 ........................................................37
第五章 結論.................................................................................................................41
5.1 實驗結論........................................................................................................................41
5.2 實驗未來展望................................................................................................................42
參考文獻 ........................................................................................................................43

圖目錄
圖 1.2-1 106 年各能源別發電量占比 ..................................................................................2
圖 1.2-2 國家再生能源實驗室每年能源效率圖..................................................................3

圖 1.3-1 單層結構元件..........................................................................................................5
圖 1.3-2 雙層結構元件..........................................................................................................6
圖 1.3-3 混合異質接面結構元件..........................................................................................7
圖 2.1-1 鈣鈦礦的晶體結構..................................................................................................9
圖 2.2-1 雜質所造成的能量差異........................................................................................11
圖 2.2-2 螢光過程................................................................................................................12
圖 2.2-3 輻射複合................................................................................................................13
圖 2.3-1 量子局限效應的現象............................................................................................16
圖 3.1-1 製程圖與量測........................................................................................................17
圖 4.1-1 MPBscraper 的 XRD 量測圖 ...................................................................................22
圖 4.1-2 MPBspin 的 XRD 量測圖 .......................................................................................23
圖 4.1-3 MPBsolid 的 XRD 量測圖.......................................................................................23
圖 4.2.1-1 MPBscraper的大氣環境下光激發螢光光譜量測圖 ..........................................25
圖 4.2.1-2 MPBspin 的大氣環境下光激發螢光光譜量測圖 ..............................................25
圖 4.2.1-3 MPBsolid 的大氣環境下光激發螢光光譜量測圖..............................................26
圖 4.2.1-4 MPBscraper、MPBspin 及 MPBsolid的大氣環境下光激發螢光光譜量測疊圖.26
圖 4.2.2-1 MPBscraper的氮氣環境下光激發螢光光譜量測圖 ..........................................27
圖 4.2.2-2 MPBspin 的氮氣環境下光激發螢光光譜量測圖 ..............................................28
圖 4.2.2-3 MPBsolid 的氮氣環境下光激發螢光光譜量測圖..............................................28
圖 4.2.2-4 MPBscraper、MPBspin 及 MPBsolid的氮氣環境下光激發螢光光譜量測疊圖.29
圖 4.2.3-1 MPBscraper的真空環境下光激發螢光光譜量測圖 ..........................................30
圖 4.2.3-2 MPBspin 的真空環境下光激發螢光光譜量測圖 ..............................................31
圖 4.2.3-3 MPBsolid 的真空環境下光激發螢光光譜量測圖..............................................31
圖 4.2.3-4 MPBscraper、MPBspin 及 MPBsolid的真空環境下光激發螢光光譜量測疊圖.32
圖 4.2.4-1 MPBscraper的氧氣環境下光激發螢光光譜量測圖 ..........................................33
圖 4.2.4-2 MPBspin 的氧氣環境下光激發螢光光譜量測圖 ..............................................34
圖 4.2.4-3 MPBsolid 的氧氣環境下光激發螢光光譜量測圖..............................................34
圖 4.2.4-4 MPBscraper、MPBspin 及 MPBsolid的氧氣環境下光激發螢光光譜量測疊圖.35
圖 4.2.5-1 MPBsolid 的四種氣體疊圖..................................................................................37
圖 4.2.5-2 MPBspin 的四種氣體疊圖 ..................................................................................38
圖 4.2.5-3 MPBscraper的四種氣體疊圖 ..............................................................................38
圖 4.2.5-4 A 切換到 N2 量測過程.......................................................................................39
圖 4.2.5-5 N2 切換到 V 量測過程.......................................................................................39
圖 4.2.5-6 V 切換到 O2 量測過程.......................................................................................40
圖 5-1 輻射複合示意圖 .......................................................................................................42

表目錄
表 4.2 PL 特徵光激發螢光光譜圖峰值特性表..................................................................36
[1]Vedpal Arya, S.G. Deshmukh, Naresh Bhatnagar, Performance analysis of high technology collaborative networks: A case of medical device manufacturing, Computers & Industrial Engineering, 137, 106065 (2019)
[2]Vidas Lekavičius, Arvydas Galinis, Vaclovas Miškinis, Long-term economic impacts of energy development scenarios: The role of domestic electricity generation, Applied Energy, 253, 113527 (2019)
[3]Tzu-Yang Huang et al., Exploring an Interesting Si Source from Photovoltaic Industry Waste and Engineering It as a Li-Ion Battery High-Capacity Anode, ACS Sustainable Chem, 4, 10, 5769-5775 (2016)
[4]Anders Hagfeldt, Gerrit Boschloo, Licheng Sun, Lars Kloo, Henrik Pettersson, Dye-Sensitized Solar Cells, Chemical Reviews, 110, 6595-6663 (2010)
[5]Arthur J. Nozik, John Miller, Introduction to Solar Photon Conversion, Chemical Reviews, 110, 6443-6445 (2010)
[6]McGehee D.G., Topinka M.A., Solar cells: Pictures from the blended zone, Nature Materials, 5, 675-676 (2006)
[7]H. Hoppe and N. S. Sariciftci, Organic solar cells: an overview, J. Mater. Res., 19, 1924-1945 (2004)
[8]Seraphin, B.O., Solar Energy Conversion: Solid-State Physics Aspects, Springer-Verlag Berlin Heidelberg, 31,5-55 (1979)
[9]Junming Li, Qiong Wang and Antonio Abate, Chapter 12 - Perovskite solar cells, Nanomaterials for Solar Cell Applications,417-446 (2019)
[10]W.S. Yang et al., Compositional engineering of perovskite materials for high-performance solar cells, Nature Publishing Group, 248, 1234-1237(2015)
[11]https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/146/01460390.pdf
[12]https://web.phys.ntu.edu.tw/asc/FunPhysExp/ModernPhys/exp/Microsoft%20Word%20-%20semiconductor%20photoluminescence.pdf
[13]https://www.ledinside.com.tw/knowledge/20120525-21281.html
[14]馮端. 固體物理學大辭典. 高等教育出版社, 1995
[15]Tae-Ho Kim et al., Heterogeneous stacking of nanodot monolayers by dry pick-and-place transfer and its applications in quantum dot light-emitting diodes, Nature Communications, 4, 2637 (2013)
[16]Makhsud I. Saidaminov et al., High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization, Nature Communications, 6, 7586 (2015)
[17]Yanjun Fang et al., Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination, Nature Photonics , 9, 679-686 (2015)
[18]Yehao Deng et al., Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules, Nature Energy, 3, 560-566(2018)
[19]Cheng Zhu et al., Strain engineering in perovskite solar cells and its impacts on carrier dynamics, Nature Communications , 10, 815 (2019)
[20]Alexander J. Knight et al., Electronic Traps and Phase Segregation in Lead Mixed-Halide Perovskite, ACS Energy Letters, 4, 75-84 (2018)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊