跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/21 14:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃士誠
研究生(外文):Huang, Shi-Cheng
論文名稱:排放管道凝結性微粒冷凝檢測法偏差問題研究
論文名稱(外文):Investigation on the Bias of Condensable Particulate Matter Measurement from Combustion Emission Source
指導教授:楊錫賢楊錫賢引用關係
指導教授(外文):Yang, Hsi-Hsien
口試委員:王琳麒楊禮豪楊錫賢
口試委員(外文):Wang, Lin-ChiYoung, Li-HaoYang, Hsi-Hsien
口試日期:2020-07-06
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:89
中文關鍵詞:固定污染源過濾性PM2.5凝結性PM2.5水相反應硫酸根硝酸鹽
外文關鍵詞:Stationary Emission SourceFilterable PM2.5Condensable PM2.5Water Phase ReactionSulfateNitrate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以往固定污染排放僅關注過濾性PM2.5,而忽略凝結性PM2.5的高排放。凝結性PM2.5檢測方法分為兩種採樣原理,第一種為使污染源廢氣通過低溫水域使其降溫凝結形成凝結性PM2.5 (冷凝法),此方法在降溫過程會形成凝結水;第二種為將污染源廢氣與乾淨環境空氣混和降溫形成凝結性PM2.5 (稀釋法),此方法為模擬廢氣排放至大氣中之型態。國內固定污染源凝結性PM2.5檢測方法為環境檢驗所公告之「排放管道中可凝結性PM2.5檢測方法」(NIEA A214.70C) (冷凝法)(US EPA Method 202),此方法經過修正後仍然存在著分析上的正向偏差。為了瞭解冷凝法偏差原因,本研究使用冷凝法與稀釋法對柴油引擎廢氣中的過濾性微粒(FPM2.5)與凝結性微粒(CPM2.5)進行同步採樣,並將柴油中硫含量分別調配至500及1000 mg/kg,分析兩種方法檢測PM2.5樣品的質量濃度、金屬成分與水溶性離子成分,比較兩種不同採樣法之間的檢測差異並探討差異原因。
本研究冷凝法採樣方法參照USEPA之Method 201A與Method 202進行過濾性微粒(FPM2.5)與凝結性微粒(CPM2.5)的採集;稀釋法採樣方法採用美國環保署公告之測試方法”Conditional Test Method 039”(CTM-039),結果顯示柴油引擎排放總PM2.5中凝結性PM2.5佔有極高的比例,冷凝法檢測之凝結性PM2.5排放在不同條件下(硫含量< 10 mg/kg、500 mg/kg、1000 mg/kg)均高出稀釋法所量測之凝結性PM2.5,平均高出2.67倍,由於冷凝法與稀釋法採樣原理的不同使冷凝法檢測過程中廢氣中二氧化硫與二氧化氮與冷凝水發生水相反應形成檢測上的偏差,廢氣中二氧化硫與二氧化氮對稀釋法較無影響。冷凝法與稀釋法檢測濃度之間的差異主要來自於水溶性離子成分中的硫酸根與硝酸鹽濃度。

Most of the previous studies on PM emissions from stationary sources have focused on the filterable PM2.5, while the condensable PM2.5 has been largely ignored despite its high concentration. Condensable PM2.5 can be measured using two sampling principles-condensation and dilution. In the condensation method, the exhaust gas is passed through low-temperature water to trap the condensable PM fraction (condensation method). In the dilution method, the exhaust gas is mixed with clean ambient air so that the temperature of the exhaust gas drops thus forming condensable PM. This method simulates the emission of exhaust gas into the atmosphere. The Environmental Protection Administration of Taiwan has developed PM2.5 sampling guidelines for stationary sources (NIEA A214.70C) (Condensation Method). However, this method suffers from a positive sampling artifact. In order to understand the reasons for the deviation of the condensation method.
This study used the condensation method (USEPA Method 201A) and the dilution method (USEPA Method 202) to simultaneously sample the filterable particles (FPM2.5) and the condensable particles (CPM2.5) in the exhaust gas of diesel engines. The dilution sampling method adopts the test method developed by the US Environmental Protection Agency "Conditional Test" Method (CTM-039). Moreover, the effects of fuel sulfur content (500 mg/kg and 1000 mg/kg) on the FPM2.5 and CPM2.5 concentrations were also investigated. The mass concentration, metal composition, and water-soluble ion composition of the PM samples obtained by two sampling methods were analyzed and compared. The results showed that the condensable PM2.5 accounted for a very high proportion of the total PM2.5 emissions from diesel engines. The CPM2.5 emissions measured by the condensation method under different conditions (sulfur content < 10 mg /kg, 500 mg/kg, 1000 mg/kg) were 2.67 times the CPM2.5 concentrations measured by the dilution method. In the condensation method, sulfur dioxide and nitrogen dioxide in the exhaust gas react with the condensate in the water phase that causes a deviation in the concentration. However, sulfur dioxide and nitrogen dioxide have no effect on the measured concentration of CPM2.5 in the dilution method. Therefore, the difference in the concentration of the condensation method and the dilution method mainly comes from the condensation of sulfate and nitrate in the water-soluble ionic components.

主目錄
中文摘要 I
Abstract III
表目錄 VIII
圖目錄 IX
第一章 前言 1
1-1 研究動機 1
1-2 研究目的與架構 2
第二章 文獻回顧 4
2-1 懸浮微粒 4
2-1-1 懸浮微粒定義與來源 4
2-1-2 凝結性微粒 5
2-1-3 懸浮微粒之危害 6
2-2 排放污染中過濾性與凝結性微粒分布比例 9
2-3 過濾性微粒採樣方法 9
2-4 凝結性微粒採樣方法 12
2-5 國際間探討冷凝法檢測偏差問題 13
2-6 稀釋採樣方法原理 16
2-7稀釋採樣技術與冷凝法文獻測值比較 17
第三章 實驗設備與方法 19
3-1 實驗規劃 19
3-2 過濾性與凝結性PM2.5採樣架構 20
3-3採樣流程 21
3-4 冷凝法採樣設備法方法 29
3-4-1 冷凝法採樣設備 30
3-4-2 冷凝法過濾性與凝結性微粒採樣分析 32
3-5 稀釋法PM2.5採樣設備法方法 40
3-6 PM2.5樣品化學成分分析 45
3-6-1 金屬成分分析 45
3-6-2 水溶性離子成分分析 46
第四章 結果與討論 48
4-1 柴油引擎之柴油硫含量 48
4-2 柴油引擎廢氣性質-溫度、水分與排氣組成 49
4-3不同二氧化硫濃度對柴油引擎排放PM2.5濃度影響 51
4-3-1過濾性PM2.5濃度 52
4-3-2凝結性PM2.5濃度 53
4-3-3總PM2.5濃度 55
4-4 以化學組成探討採樣原理對柴油引擎排放凝結性PM2.5影響 57
4-4-1 水溶性離子與金屬成份分析 58
4-4-2 硫酸根濃度 60
4-4-3 硝酸鹽濃度 61
第五章 結論 63
參考文獻 65
附錄 品質保證與品質控制 69
附錄I 濾紙秤重品質管制 69
附錄II 離子分析之品質保證與控制 72
附錄III 金屬分析品保品管 78

表目錄
表2-1 PM2.5生成與來源 5
表3-1 採樣條件規劃 20
附表1 水溶性離子之偵測極限 77
附表2 金屬之偵測極限 89

圖目錄
圖2-1 燃燒型微粒形成機制 6
圖2-2 呼吸系統疾病中微粒毒性的不同途進與機制 8
圖2-3 標準狀態下等速吸引流速情形 11
圖2-4 不同等速吸引流速採樣誤差情形 11
圖2-5 冷凝法採樣模式 14
圖2-6 煙道中傳統與稀釋採樣技術比較 18
圖3-1 稀釋法實驗設計 19
圖3-2 柴油引擎採樣系統示意圖 21
圖3-3 採樣流程 22
圖3-4 測定孔位置示意圖 23
圖3-5 排氣組成測定(Orsat)裝置 24
圖3-6 排放管道中細懸浮微粒(PM2.5)檢測方法 29
圖3-7 管道內冷凝採樣法示意圖 30
圖3-8 凝結性微粒測定流程圖 35
圖3-9 過濾性微粒前處理流程 39
圖3-10 稀釋採樣系統示意圖 40
圖3-11 感應耦合電漿光學放射光譜儀 45
圖3-12 離子層析儀 47
圖4-1 柴油引擎排氣組成 50
圖4-2 柴油引擎排氣管連接之擴大管溫度 50
圖4-3 柴油引擎排放廢氣性質-水分 51
圖4-4 柴油引擎過濾性PM2.5濃度 53
圖4-5 柴油引擎凝結性PM2.5濃度 54
圖4-6 柴油引擎PM2.5排放濃度 56
圖4-7 冷凝法量測之過濾凝與凝結性PM2.5比例 56
圖4-8 稀釋法量測之過濾凝與凝結性PM2.5比例 57
圖4-9 凝結性PM2.5中總重金屬濃度 59
圖4-10 凝結性PM2.5中總水溶性離子濃度 60
圖4-11 硫酸根離子濃度 61
圖4-12 硝酸鹽離子濃度 62
附圖1 離子分析QA/QC管制流程圖 73
附圖2 本計畫水溶性離子之檢量線 74
附圖3 金屬分析QA/QC管制流程圖 80
附圖4 Al、As、Ba、Ca、Cd、Co、Zn、Cr之檢量線 81
附圖5 Cu、Fe、K、Mg、Mn、Na、Ni、Pb之檢量線 82
附圖6 Sb、Se、Sr、V之檢量線 83




Auchincloss, A.H., Diez Roux, A.V., Dvonch, P.L., Brown, J.T., Barr, R.G., Daviglus, M.L., 2008. Associations between recent exposure to ambient fine particulate matter and blood pressure in the Multi-ethnic Study of Atherosclerosis (MESA). Environmental Health Perspectives, 116, 486-491.
Ai, S., Qian, Z.M., Gou, Y., Yang, Y., Rolling, C., Liu, E., Wu, F., Lin, H., 2019. Long-term exposure to ambient fine particles associated with asthma A cross-sectional study among older adults in six low- and middle-income countries. Environmental Research, 168, 141-145.
Brook, R.D., Rajagopalan, S., Pope, C.A., Brook 3rd, J.R., Bhatnagar, A., Diez-Roux, A.V., 2010. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation, 121, 2331-2378
Cano, M., Vega, F., Navarrete, B., Plumed, A., Camino, J.A., 2017. Characterization of emissions of condensable particulate matter in clinker kilns using a dilution sampling system. Energy & Fuels, 31, 7831-7838.
England, G.C., Zielinska, B., Loos, K., Crane, I., Ritter, K., 2000. Characterizing PM2.5 emission profiles for stationary sources: comparison of traditional and dilution sampling techniques. Fuel Processing Technology, 65-66, 177-188
Feng, C., Li, Y., Cui, L., 2018. Critical review of condensable particulate matter. Fuel, 224, 801-813.
Huang, R., Wu, H., Yang, L., 2020. Investigation on condensable particulate matter emission characteristics in wet ammonia-based desulfurization system. Journal of Environment Sciences, 92, 95-105.
Hemeon, W.C.L., Black, A. W., 1972. Stack dust sampling: in-stack filter or E.P.A. train. Journal of the Air Pollution Control Association, 22, 516-518.
Lee, H.S., and Kang, B.W., 2001. Chemical characteristics of principal PM2.5 species in Chongju, South Korea. Atmospheric Environment, 35, 739-746.
Liu, X., Ouyang, W., Shu, Y., Tian, Y., Feng, Y., Zhang, T., Chen, W., 2019. Incorporating bioaccessibility into health risk assessment of heavy metals in particulate matter originated from different sources of atmospheric pollution. Environmental Pollution, 254 (Part B), 113113.
Li, X., Zhou, C., Li, J., Lu, S., Yan, J., 2019. Distribution and emission characteristics of filterable and condensable particulate matter before and after a low-low temperature electrostatic precipitator. Environmental Science and Pollution Research, 13, 12798-12806.
Mohamad, N., Latif, M.T., Khan, M.F., 2016. Source apportionment and health risk assessment of PM10 in a naturally ventilated school in a tropical environment. Ecotoxicology and Environmental Safety, 124, 351-362.
Miller, K.A., Siscovick, D.S., Sheppard, L., Shepherd, K., Sullivan, J.H., Anderson, G.L., 2007. Long-term exposure to air pollution and incidence of cardiovascular events in women. The New England Journal of Medicine, 356, 447-458.
Mahowald, N., 2001. Aerosol indirect effect on biogeochemical cycles and climate. Science, 334, 794-796.
Nel, A.E., Diaz-Sanchez, D., Li, N., 2001. The role of particulate pollutants in pulmonary inflammation and asthma: evidence for the involvement of organic chemicals and oxidative stress. Current Opinion Pulmonary Med, 7(1), 20-26.
Richards, J., Holder, T., Gosshaw, D., 2005. Optimized Method 202 Sampling Train to Minimize the Biases Associated with Method 202 Measurement of Condensable Particulate Matter Emission. Air and Waste Management Association, St. Louis, Missouri. November 2-3.
Russel, A.G., Brunekreef, B., 2009. A focus on particulate matter and health. Environmental Science & Technology, 43, 4620-4625.
Shi, L., Zanobetti, A., Kloog, I., Coull, B.A., Koutrakis, P., Melly, S.J., Schwartz, J.D., 2016. Low-concentration PM2.5 and mortality: estimating acute and chronic effects in a population-based study. Environmental Health Perspectives, 124, 46-52.
Song, J., Lu, S., Wu, Y., Zhou, C., Li, X., Li, J., 2020. Migration and distribution characteristics of organic and inorganic fractions in condensable particulate matter emitted from an ultralow emission coal-fired power plant. Chemosphere, 243, 125346.
Streets, D.G., Wu, Y., Chin, M., 2006. Two‐decadal aerosol trends as a likely explanation of the global dimming/brightening transition. Geophysical Research Letters. 33, 15.
Schwarze, P.E., Øvrevik, J., Lag, M., Refsnes, M., Nafstad, P., Hetland, R.B., Dybing, E., 2008. Particulate matter properties and health effects: consistency of epidemiological and toxicological studies. Human & Experimental Toxicology, 35, 559-579.
Wu, J.Z., Ge, D.D., Zhou, L.F., Hou, L.Y., Zhou, Y., Li, Q.Y., 2018. Effects of particulate matter on allergic respiratory diseases. ScienceDirect, 4, 95-102.
Wu, Y., 2014. Energy and Environmental Engineering: Proceedings of the 2014 International Conference on Energy and Environmental Engineering. (ICEEE 2014). September 21-22. Hong Kong, CRC Press (2015).
Xu, Q., Li, X., Wang, S., Wang, C., Huang, F., Gao, Q., Wu, L., Tao, L., Guo, J., Wang, W., Guo, X., 2016. Fine Particulate Air Pollution and Hospital Emergency Room Visits for Respiratory Disease in Urban Areas in Beijing. China, in 2013. PLoS One, 11, 4.
Yang, H.H., Lee, K.T., Hsieh, Y.S., Luo, S.W., Huang, R.J., 2015. Emission characteristics and chemical compositions of both filterable and condensable fine particulate from steel plants. Aerosol and Air Quality Research, 15, 1672-1680.
Yang, H.H., Luo, S.W., Lee, K.T., Wu, J.Y., Chang, C.W., Chu, P.F., 2016. Fine particulate speciation profile and emission factor of municipal solid waste incinerator established by dilution sampling method. Journal of the air & Waste Management Association, 66, 807-814.
Yang, H,H., Arafath, S,M., Lee, K.T., Hsieh, Y.S., Han, Y.T., 2018. Chemical characteristics of filterable and condensable PM2.5 emissions from industrial boilers with five different fuels. Fuel, 232, 415-422.
Zhang, Y., Yuan, Shuai., Feng, X., Li, H., Zhou, J., Wang, B., 2013. Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. Journal of the American Chemical Society. 138, 5785-5788.
吳啟文,「台灣中部都會區懸浮微粒粒徑分佈之污染物特性分析」,碩士論文,國立中央大學環境工程研究所,桃園(1996)。
吳至晏,「稀釋法與煙道內熱採樣法應用於固定源PM2.5檢測比較研究」,碩士論文,朝陽科技大學環境工程與管理系,台中(2016)。
經濟部工業局,2020,生產中工廠清冊(含臨時工場)。

電子全文 電子全文(網際網路公開日期:20250723)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊