跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/21 01:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林玉真
研究生(外文):LIN,YU-CHEN
論文名稱:梅子鹽漬液酸化玻璃瓶裝花生罐頭製程之研究
論文名稱(外文):Development of Mei-Brine Acidified Peanuts in Glass Jars
指導教授:柯文慶柯文慶引用關係
指導教授(外文):KO, WEN-CHING
口試委員:吳瑞碧徐國強柯文慶
口試委員(外文):WU, SWI-BEA、HSU, KUO-CHIANGKO, WEN-CHING
口試日期:2020-07-23
學位類別:碩士
校院名稱:大葉大學
系所名稱:食品暨應用生物科技學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:61
中文關鍵詞:花生梅鹽漬液復水酸化瓶裝罐頭
外文關鍵詞:peanutmei brinerehydrationacidificationbottled can product
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:1
梅具產期集中、高酸低糖特色,採收後大都進行鹽漬貯存,產季過後再日曬成梅胚或經脫鹽後進行二次加工,而鹽漬梅副生的梅鹽漬液的利用為梅加工廠的重要課題。本研究即將乾燥花生浸漬於梅鹽漬液,在復水的同時達到酸化效果,期能開發一般梅加工廠即可產製的酸化瓶裝花生罐頭。
結果顯示,花生在常溫流動水復水期間,隨時間延長,水分呈現增高趨勢,就復水率言,16 hr 後即達平衡(約38%),其相對硬度降低至約 30 MPa。煮沸可加速花生之復水,煮沸至60 min,水分與復水率仍會增加,但硬度在煮沸 30 min 後即不再改變。考量常溫復水時間較長之風險與實務加工之方便性,煮沸復水應為花生復水之適當方式。
梅鹽漬液具高鹽、高酸等特性,其NaCl 濃度 26.3%、總酸 4.96%,pH 1.90,以RO水進行調整至 NaCl 1.95%、總酸 0.42%、pH 2.44後對花生進行復水,在花生與梅鹽漬液維持 1:15 w/v 之比例下煮沸復水45 min,其硬度即達定值,而花生之pH 也降至 < 4.6 之酸化穩定值,總酸約為 0.26%。
取以梅鹽漬液復水酸化之花生,裝瓶(方瓶,高x寬:70mm x 510mm)、注加調味液、假封、常壓蒸汽加熱殺菌 30 min、中心溫度85℃以上、密封、冷卻,製成瓶裝酸化花生,檢測並確認製品之 pH 為 4.4 (< 4.6),初步客戶接受度品評測試,顯示此製品具發展潛力,唯硬度與汁液風味尚需進一步調整方符市場要求。

Mei (Japanese apricot) has special features with harvest season concentration and high acid-low sugar fruit. After harvest, most of them are stored by brining and further processed to mei embryo through solar drying or secondary processed products after de-salting. The utilization of byproduct brine becomes an important topic of mei processing factory. In this study, peanut were immersed in the brine to achieve the requirement of rehydration and acidification. We are looking forward to developing a bottled peanut can product that can easily be produced in a common mei factory.
The result showed that moisture content of peanut increased during rehydration in running water at room temperature. Equilibrium state reached after 16 hr referred to rehydration ratio. Meanwhile, the hardness decreased to 30 MPa. Boiling effectively promoted the rehydration. Though moisture content and rehydration ratio still slightly increased after boiling for 60 min, the hardness almost kept at a stable value after boiling for 30 min. In consideration of the risk during rehydration and convenience of processing practice, boiling will be used for peanut rehydration.
Mei brine was high in salt and acid. For palatability, it was diluted from 26.3% NaCl, 4.96% acidity, pH 1.9 to 1.95%, 0.42% and 2.44, respectively. Peanuts were rehydrated with the diluted mei brine at the ratio of 1:15 w/v. Hardness reached a stable value after boiling for 45 min. Meanwhile pH of peanut dropped to below 4.6 with 0.26% total acidity.
The rehydrated and acidified peanut was processed into an acidified can product through the processes of filling to glass bottle ( square bottle,H*W: 70mm x 510mm ), adding with seasoning juice, false capping, steam atmospheric sterilization for 30 min, temperature above 85℃, cap sealing, and cooling. pH below 4.6 was recognized for the product. Preliminary customer acceptance test showed that it will be a potent product through hardness improvement and juice flavor adjustment.

目錄
封面內頁
簽名頁
中文摘要………………………………….......................... iii
英文摘要………………………………….......................... v
誌謝…………………………………................................ vi
目錄…………………………………................................. x
圖目錄…………………………………............................ xii
表目錄…………………………………............................ xiii
1. 前言………………………………………………………… 1
2. 文獻探討…………………………………………………... 2
2.1 梅與梅鹽漬液簡介………..………………………… 2
2.2 花生簡介……………………………………………… 6
2.3 復水…………………………………………………… 9
2.4 酸化…………………………………………………… 9
2.5 食物質地……………………………………………... 10
2.6 物性測定..………………………..……………........ 10
2.7 感官品評………………...…………………………… 15
2.8 巴氏殺菌法………..………………………...………. 15
3. 材料與方法…………………………..…………….......... 17
3.1 實驗材料……..……….……………………………… 17
3.1.1 梅鹽漬液……………………………………….. 17
xi
3.1.2 台南14 號花生………………………………… 17
3.1.3 酸化液製備……..……………………………… 17
3.2 實驗設計與流程……………….……………………. 18
3.3 分析方法…………...………………………………… 22
3.3.1 水分測定……………………………………….. 22
3.3.2 氯化鈉測定………………………………..…… 22
3.3.3 重量……………………………………………... 23
3.3.4 復水率測定…………………………..………… 23
3.3.5 物性測定……………………………………….. 23
3.3.6 pH 值……………………………………………..24
3.3.7 滴定酸……………………………..…………… 24
3.4 感官品評……………………………..………………. 25
4. 結果與討論…………………………….…………........... 29
4.1 花生在不同溫度清水中復水歷程品質分析……… 29
4.2 以梅鹽漬液對花生進行復水之探………….…….. 37
4.3 梅汁花生的製作…..…………………….…………… 44
4.4 梅汁花生成品物性分析……………….…….......... 45
4.5 梅汁花生成品感官品評………………...…………. 50
5. 結論………………………………………………………… 55
參考文獻…………………………..…………………………. 56

圖目錄
圖1. 典型物性分析模型圖........................................ 12
圖2. 花生以清水復水品質檢測流程圖….………..……. 19
圖3. 花生以梅鹽漬液復水品質檢測流程圖…………… 20
圖4. 梅汁花生加工流程圖……………………………….. 21
圖5. 花生以常溫清水復水時水分與硬度之變化..……. 33
圖6. 花生以常溫清水復水時重量與復水率之變化…...34
圖7. 花生以沸水復水時水分與硬度之變化.………….. 35
圖8. 花生以沸水復水時重量與復水率之變化………… 36
圖9. 花生以添加有梅鹽漬液煮沸水復水時 pH 值
和總之變化………..……………….………………… 41
圖10. 花生以添加有梅鹽漬液煮沸水復水時硬度和
水分含量之變化….……………………………….… 42
圖11. 花生以添加有梅鹽漬液煮沸水復水時重量和
復水率之變化…………………………………......... 43
圖12. 梅汁花生成品圖…………………………………….. 44
圖13. 梅汁花生物性模型圖……………..….…………….. 48

表目錄
表1. 台灣全國梅子收穫概況……………………………… 3
表2. 台灣梅子主要產地產量概況…..……………............ 4
表3. 台灣梅子產量佔比…………………………….……... 5
表4. 北港地區花生分類方式………………….……………. 7
表5. 北港地區加工業這花生分級方式……...………….. 8
表6. 物性測定參數項目名詞解釋…...……………........ 13
表7. 物性分析中感官屬性名詞之定義..……….………. 14
表8. 梅汁花生硬度、脆性、咀嚼性…….……………… 47
表9. 梅汁花生內聚性、彈性、膠著性…….………...... 49
表10. 梅汁花生感官品評分析I…………………..……….52
表11. 梅汁花生感官品評分析II…………………………..53
表12. 梅汁花生感官品評分析III………………………….54
1. 中華民國國家標準。2005。醃漬食品檢驗法 總 號 CNS
6246 類 號 N 6126。經濟部標準檢驗局。台北。台灣。
2. 行政院農業委員會。2020。農業統計年報。行政院農業
委員會。
3. 李秀、賴滋漢、柯文慶。2003。食品分析與檢驗。p.64-
p.66。 富林。 台中,台灣。
4. 住 江 金 之 、井 上 四 郎 。1959。合 成 梅 酢 による 若生姜 の
軟化防止 について *。農 產 加工技術研究 會 誌。6 (5):25-
26。
5. 林恭義、楊允聰。1998。落花生新品種台南 13 號及台
南 14 號的育成與推廣。 台南區農業專訊, 25:3-8。
6. 張浩玉、黃星奕。2008。醋豆產品的質地分析 (TPA)試
驗研究。中國糧油學報。 23 (3):181-185。
7. 蔡文福。1994。雜糧作物各論。p.1043-p.1151。財團法
人台灣區雜糧發展基金會。 台北,台灣。
8. Silva, L. B., Queiroz, M. B., Fadini, A. L., Fonseca, R. C. C.,
Germer, S. P. M. and Efraim, P. 2016. Chewy candy as a model
system to study the influence of polyols and fruit pulp (açai) on
texture and sensorial properties. LWT - Food Science and
Technology. 65: 268-274.
9. Conti-Silva, A. C., Bastos, D. H. M. and Arêas, J. A. G. 2012.
The effects of extrusion conditions and the addition of volatile
compounds and flavour enhancers to corn grits on the retention of
the volatile compounds and texture of the extrudates.
International Journal of Food Science and Technology. 47(9):
1896–1902.
10. Corvinus, T. D. 2014. Food Technologies: Pasteurization.
Encyclopedia of Food Safety. 3: 219-224.
11. D oymaz , İ . 2 0 0 2 . D r y i n g K i n e t i c s a n d R e h y d r a t i o n
Characteristics of Convective Hot- Air Dried White Button
Mushroom Slices. Journal of Chemistry. Hindawi. 2014: 1-8.
12. Ding, Q., Ainsworth, P., Plukett, A., Tucker, G. and Marson, H.
2006. The effect of extrusion conditions on the functional and
physical properties of wheat-based expanded snacks. Journal of
food Engineering. 73(2): 142–148.
13. Deng, Y., Luo, Y. L., Wang, Y. G., Yue, J., Liu , Z. M., Zhong,
Y., Zhao, Y. Y. and Yang, H. S. 2014. Drying-induced protein and
microstructure damages of squid fillets affected moisture
distribution and rehydration ability during rehydration. Journal of
Food Engineering. 123: 23-31.
14. Dupas de Matos, A., Curioni, A., Bakalinsky, A. T., Marangon,
M., Pasini, G. and Vincenzi, S. 2017. Chemical and sensory
analysis of verjuice: an acidic food ingredient obtained from
unripe grape berries. Innovative Food Science and Emerging
Technologies. 44: 9-14.
15. Dupas de Matos, A., Marangon, M., Magli, M., Cianciabella, M.,
Predieri, S., Curioni, A. and Vincenzi, S. 2019. Sensory
characterization of cucumbers pickled with verjuice as novel
acidifying agent. Food Chemistry. 286: 78-86.
16. Iwahashi, C., Kanayama, H. and Azuma, J. I. 2013. The
Processing Method and Quality of Ume Products. Bulletin of the
Society of Sea Water Science. 67: 208-211. Japan.
17. Maskan, M., 2001. Drying, shrinkage and rehydration
characteristics of kiwifruits during hot air and microwave drying.
Journal of Food Engineering. 48: 177–182.
18. Marabi, A., Thieme, U., Jacobson, M. and Saguy I.S. 2006.
Influence of drying method and rehydration time on sensory
evaluation of rehydrated carrot particulates. Journal of Food
Engineering. 72: 211-217.
19. Moreira, R., Chenlo, F., Chaguri, L. and Fernandes, C. 2008.
Water absorption, texture, and color kinetics of air-dried
chestnuts during rehydration. Journal of Food Engineering. 86:
584–594.
20. Maldonado,S., Arnau, E. and Bertuzzi, M. A. 2010. Effect of
temperature and pretreatment on water diffusion during
rehydration of dehydrated mangoes. Journal of Food Engineering.
96: 333-341.
21. Majerskaa, J.,Michalskab, A. and Figiela, A. 2019. A review of
new directions in managing fruit and vegetable processing
byproducts. Trends in Food Science & Technology. 88: 207-219.
22. Nascimento, E. M. G. C., Carvalho, C. W. P., Takeiti, C. Y.,
Freitas, D. D. G. C. and Ascheri, J. L. R. 2012. Use of sesame oil
cake (Sesamum indicum L.) on corn expanded extrudates. Food
Research International. 45 (1): 434–443.
23. Nath, A., Chattopadhyay, P. K. and Majumdar, G. C. 2012.
Optimization of HTST process parameters for production of
ready-to-eat potato-soy snack. Journal of Food Science and
Technology. 49(4): 427–438.
24. Okos, M. R., Campanella, O., Narsimhan, G., Singh, R. K. and
Weitnauer, A. C., 2007. Food dehydration. In: Heldman, D.H.,
Lund, D.B. (Eds.), Handbook of Food Engineering. CRC Press. pp.
601–774. New York, USA.
25. Okpala, L. C. and Ekechi, C. A., 2014. Rehydration
characteristics of dehydrated West African pepper (Piper
guineense) leaves. Food Science and Nutrition. 2(6): 664–668.
26. Pamies, B. V., Roudaut, G., Dacremont, C., Meste, M. L. and
Mitchell, J. R. 2000. Understanding the texture of low moisture
cereal products: mechanical and sensory measurements of
crispness. Journal of the Science of Food and Agriculture. 80 (11):
1679–1685.
27. Paula, A. M. and Conti-Silva, A. C. 2014. Texture profile and
correlation between sensory and instrumental analyses on
extruded snacks. Journal of Food Engineering. 121: 9-14.
28. Pan, J. H., Lee, K. Y., Kim, J. H., Shin, H. J., Lee, J. H. and Kim,
Y. J. 2016. Prunus mume Sieb. et Zucc. fruit ameliorates alcoholic
liver injury in mice by inhibiting apoptosis and inflammation
through oxidative stress. Journal of Functional Foods. 25: 135-
148.
29. Szczesniak, A. S. 1963a. Classification of textural characteristics.
Journal of Food Science. 28: 385–389.
30. Szczesniak, A. S. 1963b. Objective measurements of food texture.
Journal of Food Science. 28: 410–420.
31. Szczesniak, A. S. 2002. Texture is a sensory property. Food
Quality and Preference. 13(4): 215–225.
32. Saeleaw, M., Dürrschmid, K. and Schleining, G. 2012. The effect
of extrusion conditions on mechanical-sound and sensory
evaluation of rye expanded snack. Journal of Food Engineering.
110(4): 532–540.
33. Siddiq, M. and Uebersax, M. A. 2018. In: S. Ghnimi & N. Guizani,
Handbook of Vegetables and Vegetable Processing, ISBN
9781119098959 (2nd edition).
34. Tajiri, T. 1997. Coagulation Ratio and Physical Properties of Tofu
Produced with Coagulants Consisting of Ume-ze and Sythetic
Coagulants. Bulletin of the Institute for Comprehensive
Agricultural Sciences. 5: 149-156. Kinki University, Japan.
35. Tola, Y. B. and Ramaswamy, H. S., 2018. Novel processing
methods: updates on acidified vegetables thermal processing.
Current Opinion in Food Science. 23: 64–69.
36. Xiao, P. G., Li, D. P. and Yang, S. L. 2002. Modern Chinese
materia medica, Vol. 2. Beijing: Chemical Industry Press.
37. Yuliani, S., Torley, P. J., D’Arcy, B., Nicholson, T. and Bhandari,
B. 2006. Extrusion of mixtures of starch and D-limonene
encapsulated with b-cyclodextrin: flavor retention and physical
properties. Food Research International. 39(3): 318–331.
38. Yoshida, M. 2013. The Processing Method and Quality of Ume
Products. Bulletin of the Society of Sea Water Science. 67: 196-
201. Japan.
39. Yan, X. T., Lee, S. H., Li, W., Sun, Y. N., Yang, S. Y., Jang, H.
D. and Kim, Y. H. 2014. Evaluation of the antioxidant and anti-
osteoporosis activities of chemical constituents of the fruits of
Prunus mume. Food Chemistry. 156: 408-415.
40. Yan, X., Li, W., Sun, Y., Yang, S., Lee, S., Chen, J., Jang, H. and
Kim, Y. 2014b. Identification and biological evaluation of
flavonoids from the fruits of Prunus mume. BioorgMed Chem Lett.
24: 1397–402.
41. Yu, Y. S. , Xia, G. S. , Xu, Y. J. , Wu, J. J. , Zhang, Y. S. and
Chen, W. D. 2015. Changes of Quality in the Fruits of Prunus
mume during Deacidification by Fermentation with Lactobacillus
Fermentium. Journal of Food Science. 80: 405-410.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top