跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/16 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李富睿
研究生(外文):LI,FU-JUI
論文名稱:雲芝玉米芯基質複合蛹蟲草菌絲體發酵 製備物應用於抗菌、抗氧化活性 及大鼠傷口癒合
論文名稱(外文):Would Healing in Rat, Activities of Anti-bacteria and Anti-oxidation by Fermentation Preparations of Cordyceps militaris Mycelium Immobilization with Corncob Pretreatment by Trametes versicolor Submerged Culture
指導教授:徐泰浩徐泰浩引用關係
指導教授(外文):HSU,TAI-HAO
口試委員:徐泰浩林芳儀薛逸煌
口試委員(外文):HSU,TAI-HAOLIN,FANG-YIHSUEH,YI-HUANG
口試日期:2020-07-30
學位類別:碩士
校院名稱:大葉大學
系所名稱:食品暨應用生物科技學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:68
中文關鍵詞:蛹蟲草雲芝玉米芯固定化傷口癒合
外文關鍵詞:Cordyceps militarisTrametes versicolorcorn cob immobilizationwound healing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蛹蟲草(Cordyceps militaris)又稱為北冬蟲夏草,目前已發現蛹蟲草活性成分中主要作用有抗菌、抗腫瘤、調節免疫力、口腔癌的治療、抑菌、抗炎等作用、防止早期衰老,改善體能等。雲芝(Trametes versicolor)別稱彩文雲芝,有著改善學習記憶、抗炎、鎮痛、保肝護肝、降脂、抑腫瘤等以上兩種真菌在保健領域及醫療領域均有顯著的優勢。
傷口的癒合過程十分複雜,需由多種組織細胞、免疫細胞及相關分子共同參與,組織傷口癒合的治療措施通常為局部給予敷料或抗生素來促進傷口修復和避免傷口的感染,但對於一些感染後難愈性傷口,療效往往不令人滿意。本研究是利用雲芝(Trametes versicolor)具有較高的產漆酶的玉米芯,且玉米芯多孔、吸附能力強、固定化效果好,再對蛹蟲草(Cordyceps militaris)進行固定化培養,探討多醣變化量及抗氧化活性,最後將蛹蟲草菌絲體發酵製備物應用於Wistar大鼠進行無菌創面傷口癒合試驗,於術後每天觀察創面感染及癒合情況。
在本研究結果顯示,在多醣體產量上,添加玉米芯能提高多醣體產量,雲芝酶解玉米芯+蛹蟲草菌培養下多醣體產量最高(4.50 g/mL ),雲芝+玉米芯培養下多醣體產量最高(3.40 g/mL )。總酚化合物含量,蛹蟲草的總酚化合物含量最高(9.69 mg/ mL ),在抗氧化試驗中,發酵製備物濃度為(8.80 mg/mL )時,DPPH的自由基清除率為雲芝酶解玉米芯+蛹蟲草較佳(96.83 %);還原力試驗中,蛹蟲草+玉米芯還原力較佳;亞鐵螯合離子試驗為蛹蟲草較佳(66.91 %)。在大鼠傷口癒合初步試驗中,在傷口癒合率發現試驗組皆有比陰性對照組的癒合時間短,經由雲芝酶解玉米芯基質複合蛹蟲草菌絲體發酵製備物,雖然不是癒合效果最快最好的,初步結果顯示蛹蟲草發酵製備物皆有加速Wistar大鼠傷口癒合的效果。

關鍵字:蛹蟲草、雲芝、玉米芯固定化、傷口癒合

Cordyceps militaris is also known as Cordyceps militaris. It has been found that the main functions of the active ingredients of Cordyceps militaris are antibacterial, anti-tumor, immune regulation, oral cancer treatment, antibacterial, anti-inflammatory, etc., prevent early aging and improve physical fitness etc. Trametes versicolor, also known as Caiwen Yunzhi, has significant advantages in improving learning and memory, anti-inflammatory, analgesic, protecting liver and protecting liver, lowering lipids, and suppressing tumors in the health care and medical fields.
The wound healing process is very complicated and requires the participation of a variety of tissue cells, immune cells and related molecules. The treatment measures for tissue wound healing are usually local administration of dressings or antibiotics to promote wound repair and avoid wound infection, but it is difficult for some infections. For healing wounds, the effect is often unsatisfactory. In this study, Trametes versicolor has a high laccase production capacity, enzymatically hydrolyzes corn cobs, and the corn cobs are porous, have strong adsorption capacity and good immobilization effect, and then immobilized Cordyceps militaris. , To explore the polysaccharide variation and antioxidant activity, and finally the Cordyceps militaris mycelium fermentation preparation was applied to Wistar rats for aseptic wound healing test, wound infection and healing were observed every day after surgery.
The results of this study show that in terms of polysaccharide yield, adding corncobs can increase the yield of polysaccharides. Trametes versicolor enzymatically hydrolyze corncob + Cordyceps militaris has the highest polysaccharide yield (4.50 g/mL), and Trametes versicolor + corncob culture Lower polysaccharide yield is the highest (3.40 g/mL). Total phenolic compound content. Cordyceps militaris has the highest total phenolic compound content (9.69 mg/mL). In the antioxidant test, when the concentration of the fermentation preparation is (8.80 mg/mL), the free radical scavenging rate of DPPH is the enzymatic hydrolysis of Trametes versicolor Corncob + Cordyceps militaris is better (96.83%); in the reducing power test, Cordyceps militaris + corncob has better reducing power; in the ferrous chelate ion test, Cordyceps militaris is better (66.91%). In the preliminary wound healing experiment in rats, it was found that the wound healing rate of the experimental group was shorter than that of the negative control group. The fermented preparation of corncob matrix and Cordyceps militaris mycelium through enzymatic hydrolysis of Trametes versicolor was not the most effective. The fastest and the best, preliminary results show that all the fermented preparations of Cordyceps militaris have the effect of accelerating wound healing in Wistar rats.

Key Words: Cordyceps militaris, Trametes versicolor, corn cob immobilization, wound healing

封面內頁
簽名頁
中文摘要 iii
ABSTRACT v
誌謝 vii
目錄 viii
圖目錄 xii
表目錄 xiii

1.前言 1
2.文獻回顧 4
2.1雲芝(Trametes versicolor)之簡介 5
2.1.1雲芝(Trametes versicolor)之介紹 5
2.1.2雲芝的生物活性成分 5
2.1.3雲芝酵素 6
2.2蛹蟲草(Cordyceps militaris)之簡介 6
2.2.1蛹蟲草(Cordyceps militaris)之介紹 6
2.2.2蛹蟲草之生物活性成分 7
2.3固定化之簡介 9
2.4玉米芯之簡介 10
2.5傷口癒合 10
2.6抑菌試驗 11
2.6.1紙錠擴散試驗(Disc-Diffusion test) 11
2.6.2最小抑菌濃度試驗(MIC﹐Minimum Inhibitory Concentration) 12
2.6.3最小殺菌濃度試驗(MBC﹐Minimum Bactericidal Concentration) 12
3.材料與方法 13
3.1實驗架構 13
3.2實驗菌株 14
3.3實驗動物 14
3.4實驗儀器與藥品 14
3.4.1實驗藥品 14
3.4.2 實驗儀器 15
3.5種菌培養 17
3.5.1雲芝培養 17
3.5.2菌種保存 18
3.5.3蛹蟲草之菌株培養 18
3.5.4固定化培養基組成 19
3.6實驗方法 20
3.6.1玉米芯製備之流程圖 20
3.6.2樣品固定化之製備流程圖 21
3.6.3動物實驗流程圖 21
3.6.4無菌創面傷口癒合試驗敷料建立…...…………..….23
3.6.5無菌創面傷口癒合試驗模式建立…...…………..….23
3.6.6實驗動物的飼養 24
3.6.7實驗分組 24
3.6.8實驗週 24
3.7成分分析方法 25
3.7.1 pH值之測定 25
3.7.2菌絲乾重測定 25
3.7.3胞外多醣分析方法 25
3.8抗氧化試驗 26
3.8.1 DPPH 自由基清除率試驗 26
3.8.2還原力試驗 26
3.8.3亞鐵離子螯合能力測定試驗 27
3.8.4總多酚含量分析試驗 27
3.9抑菌活性測試 28
3.9.1試驗菌株 28
3.9.2抑菌能力試驗 28
4.結果與討論 29
4.1 玉米芯固定化發酵製備物型態研究 29
4.2 各製成發酵製備物生物質量影響 31
4.3各製成發酵製物多醣產量影響 34
4.4固定化發酵製備物代謝產物總酚化合物試驗 37
4.5固定化發酵製備物代謝產物抑菌試驗 39
4.6固定化發酵製備物抗氧化試驗 41
4.6.1蛹蟲草菌固定化發酵製備物清除DPPH的自由基能能力 41
4.6.2蛹蟲草菌固定化發酵製備物之還原力 41
4.6.3蛹蟲草菌固定化發酵製備物之亞鐵螯合離子 41
4.7無菌創面傷口癒合試驗 44
5.結論 47
參考文獻 48

圖目錄

圖 2.1 蟲草素,N 6-(2-hydroxyethyl)-腺苷和腺苷的化學結構 7
圖 3.1 實驗流程圖 13
圖 3.2 玉米芯製備流程圖 20
圖 3.3 樣品固定化製備流程圖 21
圖 3.4 動物實驗流程圖 22
圖 4.1 玉米芯固定化發酵製備物型態研究 30
圖 4.2 固定化發酵製備物Biomass比較 33
圖 4.3 蛹蟲草發酵製備物多醣變化 35
圖 4.4 雲芝發酵製備物多醣變化 36
圖 4.5 固定化發酵製備物代謝產物抑菌試驗 40
圖 4.6 固定化發酵製備物DPPH比較 42
圖 4.7 固定化發酵製備物還原力比較 42
圖 4.8 固定化發酵製備物亞鐵螯合離子比較 43
圖 4.9 Wistar傷口癒合率 45
圖 4.10 Wistar傷口癒合變化 46

表目錄

表 1.1 代號總稱 03
表 3.1 雲芝液態培養基組成成分 18
表 3.2 蛹蟲草液態培養基組成成分 19
表 4.1 固定化發酵製備物 pH 變化 32
表 4.2 不同蛹蟲草菌固定化發酵製備物總酚含量比較………...38




1.馮潔、農曉琳。2019。青蒿琥酯對醣尿病大鼠傷口皮膚TNF-α的影響。全科口腔醫學雜志(電子版)6(10):9-10。
2.范超、黎繼烈、王揮、郝聚喜、丁麗霞、李忠海。2011。 玉米芯固定化單寧酶的工藝條件優化。食品科學32(11) :123-128。
3.羅淑芬、胡文鬱。2007。慢性傷口之評估與測量原則。護理雜誌54(2) :62-67。
4.李冠龍、鄭喜群、劉曉蘭等。2019。蛹蟲草玉米肽功能性飲料的研製及其抗氧化活性研究。食品與發酵工業45(14):163-169。
5.李昌文、張麗華、縱偉、李江濤。2015。玉米芯的綜合利用研究技術進展。食品研究與開發 (15):139-143。
6.李偉、薑玉新、陸曉華。2019。牛磺酸對STZ誘導的醣尿病大鼠傷口癒合的影響。皖南醫學院學報 38(6):515-518。
7.林石源。2005。蛹蟲草子實體培養條件與活性成分組成之研究。III頁。大葉大學生物產業科技學系碩士論文。彰化,台灣。
8.劉動斌、劉莉娜、吳敬、陳晟。2018。Sulfolobus solfataricus P2 β-半乳醣苷酶在枯草芽孢桿菌中的表達及固定化。 44(7):37-43。
9.劉寬博。2017。廣義蟲草類真菌來源的N6-(2-羥乙基)腺苷的研究開發現狀與思考。菌物學報 36(1):6-12。
10.劉曉卉、葉淑幸、陳椒華、陳勁初。2016。蛹蟲草發酵液凍乾粉之28天重複劑量安全性分析 J Biomed Lab Sci 28(3):105。
11.劉玉輝、王瑞芳、安曉萍等。玉米芯多糖的微生物發酵工藝及其單糖組成和體外益生活性研究 食品工業科技202041(5):107-112。DOI:10.13386/j.issn1002-0306.2020.05.018。
12.劉曉紅、宋潔、欒宏偉。2018。鮮蛹蟲草與幹蛹蟲草抗氧化活性和活性物質差異研究。中國食用菌 37(6):56-63。
13.高恩麗。2007。雲芝漆酶的生產及其應用基礎研究(博士論文)。取自華藝線上圖書館系統(系統編號Y1271161)。
14.高遠。2009。樺褐孔菌腦類化合物的分析及深層液態發酵條件的優化。III頁。江南大學碩士論文。江南,中國。
15.韓燕峰。2012。蛹蟲草菌株發酵液和菌絲提取物的抑菌活性初探。湖北農業科學51(16):4。
16.黃宇、張海偉、徐芳森。2008。植物酸性磷酸酶的研究進展。華中農業大學學報 (1):148-154。
17.習雪峰。2006。雲芝多醣對耐力運動大鼠血液生化指標、組織自由基代謝及NO/NOS系統的影響研究。陜西師範大學。陜西,中國。
18.新湖。2015。雲芝的本草考證及其藥理活性成分的研究。III頁。吉林大學碩士學位論文。長春,中國。
19.徐泰浩、林芳儀、羅慧珍。2011。天然絲瓜絡載體固定化雲芝菌絲體批次饋料生產胞外醣肽。中國菌物學會第三屆藥用真菌學術研討會論文集 110頁。中國菌物學會 2011 年 5 月 20-22 日青島,中國。
20.向光俊、楊洪政。 2018 。三乙醇胺混合凡士林乳膏對腋臭微創術後患者創面的修復作用分析。中國美容醫學 (2) :26。
21.朱運平、許麗亞、範光森。2017。具有轉醣苷活性β-半乳醣苷酶菌株的篩選鑒定。食品與生物技術學報 36(06):598。
22.趙龍、蔣雪薇、邊佳為、沈俊秀、陳永發。2013。玉米芯載體吸附法固定化米根黴發酵L-乳酸的工藝條件。食品科學 34(7):201-205。
23.張盼。2017。高效纖維素分解菌的篩選及其包埋固定化。III頁。東北農業大學碩士論文。東北,中國。
24.鈔亞鵬、 錢世鈞。2001。真菌漆酶及其應用。中國生物工程雜誌 21(5):23-28。
25.柴新義、朱文東、陳美玲、於士軍、羅俠、胡文龍。2019。野生雲芝主要營養成分及其多醣抑菌效果。集寧師範學院學報NO.6。集寧,中國。
26.舒翔。2017。雲芝(Coriolus versicolor)的抗炎活性評價與樺褶孔菌(Lenzites betulina)的活性次生代謝產物研究。III頁。湖北中醫藥大學碩士論文。湖北,中國。
27.沈偉、朱宇紅、郝武常。2019。北蟲草中蟲草素和蟲草多醣的提取純化研究 。西北藥學雜誌 34(4):443-447。
28.任東亞。2017。改性玉米芯固定SRB污泥顆粒修復煤況酸性廢水實驗。III頁。遼寧工程技術大學碩士論文。遼寧,中國。
29.孫姍。2014。再生絲素溶液凝膠化過程的研究。III頁。 蘇州大學碩士論文。蘇州,中國。
30.殷偉平、龔珊、蔣星紅。2002。雲芝醣肽的鎮痛作用及其機理的初步分析。中成藥 24(1):41-43。
31.30.楊佳蓉、徐泰浩、林芳儀。2012。應用玉米軸芯以靜置培養雲芝Trametes versicolor LHI生產木寡醣之探討。III頁。大葉大學生物產業科技學系碩士論文。彰化,台灣。
32.王鳳岩、許鑫、胡三蓮。2017。密閉濕性敷料,凡士林紗布在供皮區應用效果的研究。實用臨床醫藥雜誌 21(2) :105-107。
33.萬朋、高俊濤、呂世傑。2015。蛹蟲草化學成分及藥理作用研究進展。上海中醫藥雜誌 49(6):95-97。
34.王米、張麗芳、費陳忠。2015。蛹蟲草多醣對小鼠腹腔巨噬細胞免疫功能的影響。中國生化藥物雜誌 35(4): 10-12。
35.王明雄、莊琇君、蕭慧美。2018。綠原酸咖啡對於STZ誘導醣尿病大鼠傷口癒合之影響。臺灣營養學會雜誌。
36.王璐。2008。木腐真菌分泌的低分子量物質在木素生物降解中的作用機制。山東大學。DOI:10.7666/d.y1352315。
37.王科峰。2017。變色栓菌產漆酶和多醣的發酵過程調控。III頁。中國科學院過程工程研究所碩士論文。北京,中國。
38.王洪彬、朱利霞、楊楠等。2018。常用中草藥對水產動物致病菌體外抑菌效果研究 。中國畜牧獸醫 45(5):1357-1366。
39.Ahmed, S. A., Al-domany, R. A., El-Shayeb, N. M., Radwan, H. H. and Saleh, S. A. 2008. Optimization, immobilization of extracellular alkaline protease and characterization of its enzymatic properties. Research Journal of Agriculture and Biological Sciences. 4(5):434-446.
40.Ai-li, Z., Jia-Hui, L. U., Na, Z., Dan, Z., Gui-rong, Z. and Li-rong, T. 2010. Extraction, purification and anti-tumor activity of polysaccharide from mycelium of mutant Cordyceps militaris. Chemical Research in Chinese Universities. 26(5):798-802.
41.Cai, D., Li, P., Chen, C., Wang, Y., Hu, S., Cui, C. and Tan, T. 2016. Effect of chemical pretreatments on corn stalk bagasse as immobilizing carrier of Clostridium acetobutylicum in the performance of a fermentation-pervaporation coupled system. Bioresource technology. 220:68-75.
42.Cherkaoui, A., Renzi, G., Fischer, A., Azam, N., Schorderet, D., Vuilleumier, N. and Schrenzel, J. 2020. Comparison of the Copan WASPLab incorporating the BioRad expert system against the SIRscan 2000 automatic for routine antimicrobial disc diffusion susceptibility testing. Clinical Microbiology and Infection. 26(5):619-625.
43.Choudhary, A., Kant, V., Jangir, B. L. and Joshi, V. G. 2020. Quercetin loaded chitosan tripolyphosphate nanoparticles accelerated cutaneous wound healing in Wistar rats. European Journal of Pharmacology. 173172.
44.Weng, C. J. and Yen, G. C. 2012. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer treatment reviews, 38(1), 76-87.
45.Das, S. K., Masuda, M., Sakurai, A. and Sakakibara, M. 2010. Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia. 81(8):961-968.
46.Han, P., Chen, C. Q., Zhang, C. L., Song, K. K., Zhou, H. T. and Chen, Q. X. 2008. Inhibitory effects of 4-chlorosalicylic acid on mushroom tyrosinase and its antimicrobial activities. Food Chemistry. 107(2):797-803.
47.Hu, S., Wang, J., Li, F., Hou, P., Yin, J., Yang, Z. and Liu, M. 2019. Structural characterisation and cholesterol efflux improving capacity of the novel polysaccharides from Cordyceps militaris. International journal of biological macromolecules. 131:264-272.
48.Jia, Y., Li, H., Bao, H., Zhang, D., Feng, L., Xiao, Y. and Xiao, L. 2019. Cordycepin (3′-deoxyadenosine) promotes remyelination via suppression of neuroinflammation in a cuprizone-induced mouse model of demyelination.
International immunopharmacology. 75:105777.
49.Jiang, Y., Wong, J. H., Fu, M., Ng, T. B., Liu, Z. K., Wang, C. R. and Liu, F. 2011. Isolation of adenosine, iso-sinensetin and dimethylguanosine with antioxidant and HIV-1 protease inhibiting activities from fruiting bodies of Cordyceps militaris. Phytomedicine. 18(2-3):189-193.
50.Jing, Y., Cui, X., Chen, Z., Huang, L., Song, L., Liu, T. and Yu, R. 2014. Elucidation and biological activities of a new polysaccharide from cultured Cordyceps militaris. Carbohydrate polymers. 102:288-296.
51.Kitakaze, M. and Hori, M. 2000. Adenosine therapy: a new approach to chronic heart failure. Expert opinion on investigational drugs. 9(11) :2519-2535.
52.Kim, Y. S., Shin, W. B., Dong, X., Kim, E. K., Nawarathna, W. P. A. S., Kim, H. and Park, P. J. 2017. Anti-inflammatory effect of the extract from fermented Asterina pectinifera with Cordyceps militaris mycelia in LPS-induced RAW264. 7 macrophages. Food Science and Biotechnology. 26(6):1633-1640.
53.Kasiewicz, L. N. and Whitehead, K. A. 2017. Recent advances in biomaterials for the treatment of diabetic foot ulcers. Biomaterials science. 5(10):1962-1975.
54.Li, P., Cai, D., Luo, Z., Qin, P., Chen, C., Wang, Y. and Tan, T. 2016. Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresource technology. 206: 86-92.
55.Lee, J. S., Kwon, J. S., Yun, J. S., Pahk, J. W., Shin, W. C., Lee, S. Y. and Hong, E. K. 2010. Structural characterization of immunostimulating polysaccharide from cultured mycelia of Cordyceps militaris. Carbohydrate Polymers. 80(4):101
1-1017.
56.Lin, L. T., Lai, Y. J., Wu, S. C., Hsu, W. H. and Tai, C. J. 2018. Optimal conditions for cordycepin production in surface liquid-cultured Cordyceps militaris treated with porcine liver extracts for suppression of oral cancer. journal of food and drug analysis.26(1):135-144.
57.Liu, X. C., Zhu, Z. Y., Tang, Y. L., Wang, M. F., Wang, Z., Liu, A. J. and Zhang, Y. M. 2016. Structural properties of polysaccharides from cultivated fruit bodies and mycelium of Cordyceps militaris. Carbohydrate Polymers. 142:63-72.
58.Lou, H. W., Ye, Z. W., Yu, Y. H., Lin, J. F., Guo, L. Q., Chen, B. X. and Yun, F. 2019. The efficient genetic transformation of Cordyceps militaris by using mononuclear protoplasts. Scientia Horticulturae. 243:307-313.
59.Martins, S. C. S., Martins, C. M., Fiúza, L. M. C. G. and Santaella, S. T. 2013. Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. African journal of biotechnology. 12(28):4412-4418.
60.Owuama, C. I. 2017. Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method. African Journal of Microbiology Research. 11(23):977-980.
61.Simões, D., Miguel, S. P., Ribeiro, M. P., Coutinho, P., Mendonça, A. G. and Correia, I. J. 2018. Recent advances on antimicrobial wound dressing: A review. European Journal of Pharmaceutics and Biopharmaceutics. 127:130-141.
62.Smiderle, F. R., Baggio, C. H., Borato, D. G., Santana-Filho, A. P., Sassaki, G. L., Iacomini, M. and Van Griensven, L. J. 2014. Anti-inflammatory properties of the medicinal mushroom Cordyceps militaris might be related to its linear (1→ 3)-β-D-glucan. PLoS One. 9(10):e110266.
63.Takeo, M., Lee, W. and Ito, M. 2015. Wound healing and skin regeneration. Cold Spring Harbor perspectives in medicine. 5(1): a023267.
64.Tao, Y., Zhang, Y. and Zhang, L. 2009. Chemical modification and antitumor activities of two polysaccharide–protein complexes from Pleurotus tuber-regium.
International Journal of Biological Macromolecules. 45(2):109-115.
65.Wang, C. C., Wu, J. Y., Chang, C. Y., Yu, S. T. and Liu, Y. C. 2019. Enhanced exopolysaccharide production by Cordyceps militaris using repeated batch cultivation. Journal of bioscience and bioengineering. 127(4):499-505.
66.Wang, C., Wu, T., Liu, G., Cheng, R., Fei, J., Song, X. and Liu, S. 2020. Promoting coagulation and activating SMAD3 phosphorylation in wound healing via a dual-release thrombin-hydrogel. Chemical Engineering Journal. 125414.
67.Wang, K. F., Sui, K. Y., Guo, C. and Liu, C. Z. 2017. Improved production and antitumor activity of intracellular protein-polysaccharide from Trametes versicolor by the quorum sensing molecule-tyrosol. Journal of Functional Foods. 37:90-96.
68.Yang, T., Guo, M., Yang, H., Guo, S. and Dong, C. 2016. The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris. Applied microbiology and biotechnology. 100(2):743-755.
69.Yang, Q., Yin, Y., Yu, G., Jin, Y., Ye, X., Shrestha, A and Sun, H. 2015. A novel protein with anti-metastasis activity on 4T1 carcinoma from medicinal fungus Cordyceps militaris. International journal of biological macromolecules. 80:385-391.
70.Zhong, L., Zhao, L., Yang, F., Yang, W., Sun, Y. and Hu, Q. 2017. Evaluation of anti-fatigue property of the extruded product of cereal grains mixed with Cordyceps militaris on mice. Journal of the International Society of Sports Nutrition. 14(1):1-10.
71.Zhang, Z., Tudi, T., Liu, Y., Zhou, S., Feng, N., Yang, Y. and Zhang, J. 2016. Preparative isolation of cordycepin, N6-(2-hydroxyethyl)-adenosine and adenosine from Cordyceps militaris by macroporous resin and purification by recycling high-speed counter-current chromatography. Journal of Chromatography B. 1033:218-225.

電子全文 電子全文(網際網路公開日期:20250904)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top