(3.238.7.202) 您好!臺灣時間:2021/03/01 22:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳氏玉碧
研究生(外文):Ngoc Bich Thi Tran
論文名稱:利用魚菜共生法探討線鱧養殖的生產力與經濟可行性
論文名稱(外文):Productivity and Economic Viability of Snakehead (Channa striata) Culture Using an Aquaponics Approach
指導教授:陳宜清陳宜清引用關係
指導教授(外文):Chen, Yi-Ching
口試委員:陳宜清余世宗林康捷彭元興李丙生
口試委員(外文):Chen, Yi-ChingYu Shih-TsungLin, Kang-JiePerng, Yuan-ShingLee, Bing-Sun
口試日期:2020-03-06
學位類別:博士
校院名稱:大葉大學
系所名稱:環境工程學系研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:95
中文關鍵詞:應用魚菜共生系統線鱧經濟效益再利用和回收氣候變遷
外文關鍵詞:applied aquaponicssnakehead (Chana striata)economic benefitsreuse and recycleclimate change
相關次數:
  • 被引用被引用:0
  • 點閱點閱:57
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究計畫通過利用、再利用和回收當地可用的材料,並開發了一種應用菜共生系統來培育高價值的當地物種。因此,本論文的主要目的是(1)在應用魚菜共生系統中開始培養線鱧,(2)選擇在應用魚菜共生系統中最佳密度的線鱧養殖,以及(3)評估以本應用魚菜共生系統線鱧之獲益比較於傳統的密集養殖。研究結果顯示,與一般水產養殖相比下,應用魚菜共生系統在線鱧養殖可節省了超過70%的水交換,也改善了池塘的水質和水量以及排水。與傳統的密集線鱧養殖(70隻魚/平方米)相比,應用魚菜共生系統中的線鱧生產率更高:例如魚的成活率更高(99.76%對比71.40%);魚的產量高出3倍(366公斤對比130公斤)。另外與傳統的蔬菜種植系統相比,在應用魚菜共生系統中水菠菜的產量更大(406.4公斤對比188公斤)。總計從應用魚菜共生系統之線鱧和水菠菜的總收入是正常農漁系統的4倍(1219.42美元對比307.04美元)。在三種養殖密度下的線鱧和水芹培育實驗中,線鱧和水芹的最高產量為最高養殖密度150隻魚/平方米之成果(726.99公斤魚和468.80公斤菜),其次為養殖密度100隻魚/平方米之成果(519.05公斤魚和460.00公斤菜),最低為養殖密度70隻魚/平方米之成果(363.66公斤魚和451.20公斤菜)。隨著養殖密度從70增加到100和150時,扣除成本之淨收入分別為736.50、962.08和1248.27美元,主要是價值高的魚產量變化差距極大。為了更進一步探討應用魚菜共生系統對傳統的水產培育法和商業化線鱧養殖的經濟利益,應用魚菜共生系統在蔬菜系統上使用了被重複利用並回收的農民所熟悉本地材料來減少投資:2,340美元(應用魚菜共生系統)對比13,745美元(傳統的蔬菜系統)。傳統魚菜共生的總建設成本是初始建造應用魚菜共生系統的5.3倍,而投資當地的商業養殖魚塘對比於應用魚菜共生系統則要高達18倍。與越南的吳郭魚相比,線鱧在價格上更具優勢,這使養殖線鱧的年收入(1,046.304美元:商業養殖魚塘; 3,157.056美元:應用魚菜共生系統)遠高於養殖吳郭魚(409.5美元:傳統水產培育)。研究發現,僅在小規模的1年運營中,應用魚菜共生是最有利可圖的模式(1,991.34美元),獲利率可達36%。總之,本論文的結果清楚地表明,應用魚菜共生系統將提供一個低成本、技術並不複雜的模式,並為透過優化的營養供給和資源管理提供了初步指導來解決缺水,土地耗竭,糧食安全和氣候變遷等問題,以提高這些系統的整體永續性,並提高生產效率和獲利能力。
This project develops an applied aquaponics system by utilizing, reusing and recycling locally available materials as well as culturing the high–value local species. Therefore, the main aims of this thesis were (1) to initial culture snakehead in applied aquaponics (AA), (2) to select the best density snakehead to culture in applied aquaponics and (3) to evaluate the general benefits of culturing snakehead in applied aquaponics to traditionally intensive snakehead. The results showed that culturing snakehead in AA saving more than 70% of water exchange than in ordinary aquaculture, improving good quality and quantity of water in pond as well as discharging. To compare with traditional intensive snakehead farming at 70 fish/m2, the product of snakehead in AA more productive: higher survival ratio of fish: 99.76% vs. 71.40%; 3 times higher in fish yield: 366 kg vs. 130 kg. The productions of water spinach were more advantage in aquaponics systems to compare with traditional planting system: 406.4 kg vs. 188 kg. The total income from snakehead and water spinach in AA was 4 times higher than in normal farming systems: US$1,219.42 and US$307.04. At the experiments of stocking snakehead and dropwort at three stocking densities, the highest returns of snakehead and dropwort productions were at the highest density of 150 fish/m2 (726.99 kg and 468.80 kg), following at density of 100 fish/m2 (519.05 kg and 460.00 kg) and the lowest at density of 70 fish/m2 (363.66 kg and 451.20 kg). The net incomes over total cost were found to be 736.50, 962.08 and 1,248.27 US$ as stocking density increases from 70 to 100 and 150 fish/m2, respectively and mainly due to wide variation of high–value fish production. To look at the economic benefits of AA to traditional aquaponics and commercial snakehead farming, the vegetable system in AA is ultimately reused and recycled the local materials that familiar to farmers to cut down the investment: US$2,340 vs. US$13,745 (vegetable system in traditional aquaponics). The total building cost of traditional aquaponics is 5.3 times expensive to compare with initial constructs the applied aquaponics and 18 times higher cost to invest a locally commercial fishpond. Snakehead is more advantageous in price to compare with Tilapia in Vietnam that is leading to the annual income in farming snakehead (US$1046.304 US: CP and US$3157.056 US: AA) higher than farming tilapia (US$409.5 US: TA). The study found that at the small scale of 1–year operation, applied aquaponics is the most profitable model (US$1991.34) at 36 percentage of interest. Conclusively, the results of this thesis clearly revealed the AA will give a model with low cost, not complex technology and provided initial guidance in overcoming the problem of lack of water, soil depletion, food security and climate change in terms of optimized nutrient and resource management to increase the overall sustainability of these systems and improve production efficiency and profitability.
封面內頁
簽名頁
ABSTRACT iii
中文摘要 v
ACKNOWLEDGEMENTS vii
CONTENTS viii
LIST OF FIGURES xii
LIST OF TABLES xiv
LIST OF ABBREVIATION xv
CHAPTER 1. INTRODUCTION 1
1.1 Background of the Study 1
1.2 Scope of Work 5
1.3 Framework of Research 6
1.4 Justification and Contribution of This Research 7
1.5 Thesis Outline and Research Portfolio 9
CHAPTER 2. LITERATURE REVIEWS 13
2.1 Global Aquaculture and Global Snakehead Market 13
2.2 Snakehead Culture in Vietnam 15
2.3 Aquaponics 19
2.3.1 What is aquaponics 19
2.3.2 Developing of aquaponics 20
2.3.3 Aquatic species in aquaponics 21
2.3.4 Plants in aquaponics 22
2.3.5 Sustainability of aquaponics 23
CHAPTER 3. MATERIALS AND METHODOLOGY 25
3.1 Study Area 25
3.2 Materials 27
3.3 Methodology 27
3.4 AA esign 28
3.4.1 Aquarium design 29
3.4.2 Vegetable bed 31
3.5 Water Monitoring 34
3.6 Fish Health and Feed Monitoring 35
3.7 Applied Aquaponics Experimental Design 36
3.7.1 Experiment 1 36
3.7.1.1 Aquaculture experimental design 36
3.7.1.2 Agriculture experimental design 38
3.7.1.3 Statistical analyses 41
3.7.2 Experiment 2 42
3.7.2.1 Aquaculture 42
3.7.2.2 Experimental parameters 43
3.7.2.3 Statistical Analysis 45
3.7.3 Experiment 3 45
CHAPTER 4. RESULTS AND DISCUSSION 47
4.1 A Small–Scale Aquaponics Trial 47
4.1.1 Water quality and parameters 47
4.1.2 Water efficiency 48
4.1.3 Aquaculture production 49
4.1.4 Evaluate the income in applied aquaponics and normal farming system 55
4.2 Growth Rate, Quality and Yield Response of Snakehead at Different Density in An Applied Aquaponics System 56
4.2.1 Fish growth performance 56
4.2.2 Water dropwort performance 59
4.2.3 Water quality parameters 60
4.2.4 Stocking Density Impact on the economic elements 62
4.3 Applied Aquaponics to Culture High Value Local Species and Ultimately Reused and Recycle The Local Materials to Build The Green and Sustainable Agriculture 64
4.3.1 The general materials and benefits to construct commercial snakehead pond, traditional aquaponics and applied aquaponics 64
4.3.2 Investment cost of building the commercial snakehead pond, traditional aquaponics and applied aquaponics 67
4.3.3 Operational cost of commercial snakehead pond, traditional aquaponics and applied aquaponics 69
4.3.4 Annual production and sales income 70
4.3.5 Annual profit 71
CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 73
5.1 Conclusions 73
5.2. Recommendations 77
REFERENCES 79
1.Ab Wahab, S. Z., Kadir, A. A., Hussain, N. H. N., Omar, J., Yunus, R., Baie, S., Noor, N. M., Hassan, I. I., Mahmood,W. H. W., Abt Razak, A., and Yusoff, W. Z. W. (2015). The Effect of Channa striatus (Haruan) Extract on Pain and Wound Healing of Post–Lower Segment Caesarean Section Women. Evidence–Based Complementary and Alternative Medicine, 2015, Article ID 849647.
2.ActionAid. (2013). Rising to The Challenge: Changing Course to Feed the World in 2050. ActionAid USA Report. https://www.actionaidusa.org/wp–content/uploads/2016/10/Rising–to–the–Challenge.pdf.
3.Adler, P. R., Harper, J. K., Takeda, F., Wade, E. M., and Summerfelt, S. T. (2000a). Economic evaluation of hydroponics and other treatment options for phosphorus removal in aquaculture effluent. Horticultural Science, 35 (6), 993–999.
4.Adler, P. R., Harper, J. K., Wade, E.W., Takeda, F., and Summerfelt, S. T. (2000b). Economic analysis of an aquaponics system for the integrated production of rainbow trout and 308 plants. International Journal of Recirculating Aquaculture, 1(1), 15–34.
5.Ahn, H., and Lee, G. S. (2017). Isorhamnetin and hyperoxide derived from water dropwort inhibits inflammasome activation. Phytomedicine, 24, 77–86.
6.Ai, G., Huang, Z. M., Liu, Q. C., Han, Y. Q., and Chen, X. (2016). The protective effect of total phenolics from Oenanthe javanica on acute liver failure induced by D–galactosamine. Journal of Ethnopharmacology, 186, 53–60.
7.Al Mahmud, N., Hasan, M. R., Hossain, M. B., and Minar, M. H. (2012). Proximate composition of fish feed ingredients available in Lakshmipur region, Bangladesh. American–Eurasian Journal of Agriculture and Environmental Science, 12(5), 556–560.
8.Amin, S. M. N., Muntaziana, M. P. A., Kamarudin, M. S., Rahim, A. A., and Rahman, M. A. (2015). Effect of different stocking densities on growth and production performances of chevron snakehead Channa striata in fiberglass tanks. North American Journal of Aquaculture, 77, 289–294.
9.Annasari, M., Aris, W. M., and Yohanes, K. (2012). Albumin and zinc content of snakehead fish (Channa striata) extract and its role in health. IEESE International Journal of Science and Technology, 1(2), 1–8.
10.Baßmann, B., Brenner, M., and Palm, H. W. (2017). Stress and welfare of African catfish (Clarias gariepinus Burchell, 1822) in a coupled aquaponic system. Water, 9(7), 504–523.
11.Benke, K. and Tomkins, B. (2017). Future food–production systems: Vertical farming and controlled–environment agriculture. Sustainability: Science, Practice and Policy, 13, 13–26.
12.Binh Duong News. (2016). Người nuôi cá lóc ở phường Thái Hòa, TX.Tân Uyên: Gặp khó vì nước sông ô nhiễm. http://www.thuvienbinhduong.org.vn/?ArticleId=1d07d2ea-537d-4867-a1f9-ca97127f1bb1
13.Boyd, C. E. and Lichtkoppler, F. (1979). Water quality management for pond fish culture. International Center for Aquaculture, Agricultural Experiment Station, Auburn, Alabama.
14.Boyd, C. E. (1990). Water Quality in Ponds for Aquaculture. Alabama Agricultural Experiment Station, Auburn University, Auburn, Alabama.
15.Bruinsma, J. (2009). The resource outlook to 2050: by how much do land, water and crop yields need to increase by 2050? Paper presented at the FAO Expert Meeting, 24–26 June 2009, Rome on “How to Feed the World in 2050”. http://www.fao.org/3/a–ak971e.pdf
16.Can Tho University (CTU). (2017). Sự Phát Triển Bền Vững Nghề Nuôi Cá Lóc Ở Việt Nam. College of Aquaculture & Fisheries. Can Tho University and AquaFish Innovation Lab. Project report funded by the National Development Agency USAID, grant number EPP–A–00–06–00012–00. https://aquafishcrsp.oregonstate.edu/sites/aquafishcrsp.oregonstate.edu/files/16pdv01uc–poster–vn–8.11.2017.pdf
17.Carew–Reid, J. (2008). Rapid Assessment of the Extent and Impact of Sea Level Rise in Viet Nam. ICEM – International Centre for Environmental Management, Indooroopilly, Queensland, Australia.
18.Castell, J. D. and Tiews, K. (1980). Report on the EIFAC, IUNS and ICES. EIFAC Technical Paper. Working group on the standardization of methodology in fish nutrition research, Hamburg, Germany.
19.Chandini, R. K., Ravendra, K., and Om, P. (2019). The Impact of Chemical Fertilizers on our Environment and Ecosystem. In book: Research Trends in Environmental Sciences, 2nd Ed., Chapter 5, 69–86.
20.Chowdhury, J. A. K., Saha, D., Hossain, M. B., Shamsuddin M., and Minar, M. H. (2012). Chemicals Used in Freshwater Aquaculture with Special Emphasis to Fish Health Management of Noakhali, Bangladesh. African Journal of Basic & Applied Sciences (AJBAS), 4(4), 110–114.
21.Chung, D. M., and Sinh, L. X. (2011). An analysis of snakehead value chain (Channa striata.) cultured in the Mekong Delta. The National Conference Proceedings on Aquaculture and Fisheries, Can Tho University, Vietnam, 4, 512–523.
22.Conijn, J. G. B. P., Schröder, J. J., and Jongschaap, R. E. E. (2018). Can our global food system meet food demand within planetary boundaries? Agriculture, Ecosystems & Environment, 251, 244–256.
23.Courtenay, W. R. Jr. and Williams, J. D. (2004). Snakeheads (Pisces, Channidae) – A Biological Synopsis and Risk Assessment. U.S. Geological Survey Circular 1251, USGS, Reston, VA. https://nas.er.usgs.gov/taxgroup/fish/docs/SnakeheadRiskAssessment.pdf.
24.Davis, C. and Davis, P. (2019). The Real Cost of INDOOR Aquaponics. Port farms Aquaponics Systems. https://portablefarms.com/2019/cost–of–indoor–aquaponics/
25.De Silva, S. S. (1989). Exotic aquatic organisms in Asia. Asian Fisheries Society special publication, no. 3, Asian Fisheries Society, Manila, Philippines. https://idl–bnc–idrc.dspacedirect.org/bitstream/handle/10625/123/IDL–123.pdf?sequence=1
26.De Stefani, G., Tocchetto, D., Salvato, M., and Borin, M. (2011). Performance of a floating treatment wetland for in–stream water amelioration in NE Italy. Hydrobiologia, 674 (1), 157–167.
27.Delaide, B., Delhaye, G., Dermience, M., Gott, J. A., Soyeurt, H., and Jijakli, M. H. (2017). Plant and fish production performance, nutrient mass balances, energy and water use of the PAFF Box, a small–scale aquaponic system. Aquacultural Engineering, 78B, 130–139.
28.Dong Thap News. (2016). Huyện Hồng Ngự: Nuôi cá lóc tự phát – tiềm ẩn nhiều rủi ro. http://baodongthap.com.vn/kinh–te/huyen–hong–ngu–nuoi–ca–loc–tu–phat–tiem–an–nhieu–rui–ro–59281.aspx
29.Dua, T. K., Dewanjee, S., Gangopadhyay, M., Khanra, R., Zia–Ul–Haq, M., De Feo, V. (2015). Ameliorative effect of water spinach, Ipomoea aquatic (Convolvulaceae), against experimentally induced arsenic toxicity. Journal of Translational Medicine, 13(1), 81.
30.Endut, A., Jusoh, A., and Ali, N. (2014). Nitrogen budget and effluent nitrogen components in aquaponics recirculation system. Desalination and Water Treatment, 52 (4–6), 744–752.
31.Endut, A., Lananan, F., Abdul Hamid, S. H. A., Jusoh, A., and Nik, W. N. W. (2016). Balancing of nutrient uptake by water spinach (Ipomoea aquatica) and mustard green (Brassica juncea) with nutrient production by African catfish (Clarias gariepinus) in scaling aquaponic recirculation system. Desalination and Water Treatment, 57(60), 29531–29540.
32.Engle, C. R. (2015). Economics of Aquaponics. Southern Regional Aquaculture Center, Publication Number 5006. https://srac–aquaponics.tamu.edu/serveFactSheet/8
33.Essa, M. A., Goda, A. M. A–S., Hanafy, M. A., El–Shebly, A. A., Mohamed, R. A., and El–Ebiary, E. H. (2008). Small–Scale Fish Culture: Guiding Models of Aquaponics and Net–enclosures Fish Farming in Egypt. Egyptian Journal of Aquatic Research, 34(3), 320–337.
34.Farhana, T., Hasan, M. E., Mamun, A. A., and Islam, M. S. (2016). Commercially culture potentiality of striped snakehead fish Channa striatus (Bloch, 1793) in earthen ponds of Bangladesh. International Journal of Pure and Applied Zoology, 4(2), 168–173.
35.Faruk, M. A. R., Ali, M. M., and Patwary, Z. P. (2008). Evaluation of the status of use of chemicals and antibiotics in freshwater aquaculture activities with special emphasis to fish health management. Journal of the Bangladesh Agricultural University, 6(2), 381–390.
36.Ferrarezi, R., and Bailey, D. S. (2019). Basil Performance Evaluation in Aquaponics. HortTechnology, 29, 1–9.
37.Filep, R. M., Diaconescu, Ş., Costache, M., Stavrescu–Bedivan, M., Bădulescu, L., and Nicolae, C. G. (2016). Pilot Aquaponic Growing System of Carp (Cyprinus carpio) and Basil (Ocimum basilicum). Agriculture and Agricultural Science Procedia, 10, 255–260.
38.Food and Agriculture Organization (FAO). (2011). Database collection of the Food and Agriculture Organization of the United Nations, Food Balance Sheets. http://faostat.fao.org/site/354/default.aspx
39.Food and Agriculture Organization (FAO). (2014a). Small–scale aquaponics food production. FAO fisheries and aquaculture technical paper, Rome, Italy.
40.Food and Agriculture Organization (FAO). (2014b). Fisheries and aquaculture technical paper, Rome, Italy.
41.Food and Agriculture Organization (FAO). (2016a). AQUASTAT database. http://www.fao.org/nr/water/aquastat/tables/WorldData–Withdrawal_eng.pdf
42.Food and Agriculture Organization (FAO). (2016b). The State of World Fisheries and Aquaculture. Contributing to food security and nutrition for all. Rome, Italy. http://www.fao.org/3/a–i5555e.pdf.
43.Food and Agriculture Organization (FAO). (2017). The Future of Food and Agriculture: Trends and Challenges. Rome. http://www.fao.org/3/a–i6583e.pdf
44.Geisenhoff, L. O., Jordan, R. A., Santos, R. C., de Oliveira, F. C., and Gomes, E. P. (2016). Effect of different substrates in aquaponic lettuce production associated with intensive tilapia farming with water recirculation systems. Engenharia Agrícola, 36(2), 291–299.
45.Gichana, Z., Meulenbroek, P., Ogello, E., Drexler, S., Zollitsch, W., Liti, D., Akoll, P., and Waidbacher, H. (2019). Growth and Nutrient Removal Efficiency of Sweet Wormwood (Artemisia annua) in a Recirculating Aquaculture System for Nile Tilapia (Oreochromis niloticus). Water, 11(5), 923.
46.Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K.V., Jijakli, H., and Thorarinsdottir , R. (2015). Challenges of sustainable and commercial aquaponics, Sustainability, 7, 4199–4224.
47.Goddek, S., Joyce, A., Kotzen, B., and, Dos–Santos, M. (2019). Aquaponics and Global Food Challenges. In: Goddek et al. (ed.) Aquaponics Food Production Systems. 3–17, Springer.
48.Göthberg, A., Greger, M., Holm, K. and Bengtsson, B. (2004). Influence of Nutrient Levels on Uptake and Effects of Mercury, Cadmium, and Lead in Water Spinach. Journal of Environmental Quality, 33, 1247–1255.
49.Graber, A., and Junge, R. (2009). Aquaponic systems: nutrient recycling from fish wastewater by vegetable production. Desalination 246, 147–156.
50.Grafton, R. Q., Daugbjerg, C. and Qureshi, M. E. (2015). Towards food security by 2050. Food Security, 7, 179–183.
51.Güzel, S., Odun, U. C., Cakmakci, T., Cakmakci, O., and Sahin, U. (2018). The effect of cucumber (Cucumis sativus) cultivation in aquaponic and hydroponic systems on plant nutrient elements and antioxidant enzyme Activity. Fresenius Environmental Bulletin, 27, 553–558.
52.Huang, D., Chen, H., Lin, C., and Lin, Y. (2005). Antioxidant and antiproliferative activities of water spinach (Ipomoea aquatica Forsk) constituents. Botanical Bulletin– Academia Sinica Taipei, 46, 99–106.
53.Huisman, E. A. (1987). The principles of fish culture production. Department of Aquaculture, Wageningen University, Netherland.
54.Hunter, M., Smith, R., Schipanski, M., Atwood, L., and Mortensen, D. (2017). Agriculture in 2050: Recalibrating Targets for Sustainable Intensification, BioScience bix010. https://doi.org/10.1093/biosci/bix010.
55.Intergovernmental Panel on Climate Change (IPCC). (2015). Climate change 2014: Mitigation of climate change. Working group III contribution to the IPCC fifth assessment report.
56.Kean, S., and Preston, T. R. (2001). Comparison of biodigester effluent and urea as fertilizer for water spinach vegetable. MSc thesis in Tropical Farming systems, University of Tropical Agriculture Foundation, Phnom Penh, Cambodia.
57.Knaus, U., Appelbaum, S., and Palm, H. W. (2018). Significant factors affecting the economic sustainability of closed backyard aquaponics systems. Part IV: Autumn herbs and polyponics. AACL Bioflux, 11(6), 1760–1775.
58.Lam, M. L., Nguyen, T. H., and Duong, N. L. (2009). Proceedings of the 4th Scientific Conference of Fisheries. Can Tho University 395–404.
59.Lan, L. M., Nguyen, T. H., and Duong, N. L. (2011). Nuôi cá lóc (Channa sp.) trong bể lót bạt tại tỉnh Hậu Giang. Proceedings of the 4th Conference on Fisheries Science. Can Tho University, 395–404. (In Vietnamese). Available online: http://www.vietlinh.vn/nuoi–trong–thuy–san/ca–loc–lot–bat.pdf.
60.Lennard, W. A., and Leonard, B. V. (2005). A comparison of reciprocating flow versus constant flow in an integrated, gravel bed, aquaponic test system. Aquaculture International, 12 (6), 539–553.
61.Long, D. N. (2010). Textbook of freshwater aquaculture technique: Bookcase of Can Tho University, Vietnam.
62.Love, D. C, Fry, J., Genello, L., Hill, E. S., Frederick, J. A., Li, X., and Semmens, K. (2014). An International Survey of Aquaponics Practitioners. PLoS One 9. https://doi.org/10.1371/journal.pone.0102662.
63.Love, D. C., Fry, J., Li, X., Hill, E. S., Genello, L., Semmens, K. and Thompson, R. E. (2015). Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture, 435, 67–74.
64.Ly, J. (2002). The effect of methionine on digestion indices and N balance of young Mong Cai pigs fed high levels of ensiled cassava leaves. Livestock Research for Rural Development, 14(6), 20-28. https://www.lrrd.cipav.org.co/lrrd14/6/ly146.htm
65.Malakar, C., Das Talukdar, D. A. and Nath Choudhury, P. P. (2015). Pharmacological potentiality and medicinal uses of Ipomoea aquatica forsk: a review. Asian Journal of Pharmaceutical and Clinical Research, 8(2), 60–63.
66.Mamat, N., Shaari, M., and Wahab, N. A. A. A. (2016). The production of catfish and vegetables in an aquaponic system. Fisheries and Aquaculture Journal, 7(4), 181.
67.Mchunu, N., Lagerwall, G., and Senzanje, A. (2017). Food sovereignty for food security, aquaponics system as a potential method: a review. Journal of Aquaculture Research & Development, 8, 497.
68.Munguia–Fragozo, P., Alatorre–Jacome, O., Rico–Garcia, E., Torres–Pacheco, I., Cruz–Hernandez, A., Ocampo–Velazquez, R. V., Garcia–Trejo, J. F., and Guevara–Gonzalez, R. G. (2015). Perspective for Aquaponic Systems: “Omic” Technologies for Microbial Community Analysis. BioMed Research International, 2015, Article ID 480386.
69.Muthmainnah, D. (2013). Grow out of striped snakehead (Channa striata) in swamp water system using fences and cages. 4th International Conference on Biology, Environment and Chemistry IPCBEE, IACSIT Press, Singapore 58, 52–55.
70.Naskar, K. R. (1990). Aquatic & semi aquatic plants of lower Ganga delta, Daya publishing house, Delhi. 173–174.
71.Nha, N. V. (2012). Thực nghiệm nuôi cá lóc (Channa sp.) trong bể lót bạt ở xã Ninh Quới, huyện Hồng Dân, tỉnh Bạc Liêu. Thesis graduated from University – Department of Fisheries – Can Tho University. (In Vietnamese).
72.Noer, E. R., Candra, A., and Panunggal, B. (2017). Nutrient content and acceptability of Snakehead–Fish (Ophiocephalus striatus) and Pumpkin (Cucurbita moschata) based complementary foods. IOP Conference Series: Earth and Environmental Science, 55, 012037.
73.Nuwansi, K., Verma, A., Tiwari, V., Prakash, C., and Chandrakant, M. (2017). Standardization of the stocking density ratios of Koi carp (Cyprinus carpio var. koi): Goldfish (Carassius auratus) in polyculture aquaponics recirculating System. Turkish Journal of Fisheries and Aquatic Sciences, 17, 1271–1278.
74.Organization for Economic Co–operation and Development (OECD). (2019). OECD–FAO Agricultural Outlook 2014–2023. https://stats.oecd.org/index.aspx?queryid=58653#
75.Palm, H. W., Nievel, M., and Knaus, U. (2015). Significant factors affecting the economic sustainability of closed aquaponic systems. Part III: Plant units. AACL Bioflux, 8, 89–106.
76.Palm, H.W., Seidemann, R., Wehofsky, S., and Knaus, U. (2014). Significant factors affecting the economic sustainability of closed aquaponic systems. Part I: System design, chemo–physical parameters and general aspects. AACL Bioflux 7, 20–32.
77.Pauly, D. (1980). On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. Journal du Conseil / Conseil Permanent International pour l'Exploration de la Mer (ICES Journal of Marine Science), 39(2), 175–192.
78.Petrea, S. M., Cristea, V., Dediu, L., Contoman, M., Lupoae, P., Mocanu, M., and Coada, M. T. (2013). Vegetable production in an integrated aquaponic system with rainbow trout and spinach. Bulletin UASVM Animal Science and Biotechnologies, 70 (1), 45–54.
79.Phong, N. B. (2012). Thực nghiệm nuôi cá lóc đen (Channa striata) trong bể bạt tại tỉnh Bạc Liêu. Thesis graduated from University – Department of Fisheries – Can Tho University. (In Vietnamese).
80.Pillay, T. V. R., and Kutty, M. N. (2005). Aquaculture Principle and Practices. Second Edition. Blackwell Publishing Ltd.
81.Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M., Lobell, D. B. and Travasso, M. I. (2014). Food security and food production systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5–Chap7_FINAL.pdf.
82.Purkait, S. and Karmakar, S. (2018). Aquaponics: A promising technology for future food production. Aqua Star, Article–3, 45–49.
83.Quyên, N. T., Minh, T. H., Hải, T. N., Hiền, T. T., and Dinh, T. D. (2016). Technical–economic efficiencies of snakehead seed production under impacts of climate change in the Mekong delta, Vietnam. Animal Review, Conscientia Beam, 3(4), 73–82.
84.Rabobank. (2015). Building a smarter food system: Improving productivity, connectivity and sustainability. Food & Agribusiness Research and Advisory. https://r.search.yahoo.com/_ylt=AwrtSUgrITheAPwA5ENr1gt.;_ylu=X3oDMTEydjBnbGRtBGNvbG8DdHcxBHBvcwMxBHZ0aWQDQjk0MTZfMQRzZWMDc3I–RV=2/RE=1580765612/RO=10/RU=https%3a%2f%2fagfundernews.com%2fwp–content%2fuploads%2f2015%2f10%2fRabobank–Building–Smarter–Food–Systems–report.pdf/RK=2/RS=GgcZjt672G5lFyub_cuQdEj3nC4–
85.Rafiee, G., and Saad, C. R. (2005). Nutrient cycle and sludge production during different stages of red tilapia (Oreochromis sp.) growth in a recirculating aquaculture system. Aquaculture, 244, 109–118.
86.Rahman, M. A., and Marimuthu, K. (2010). Effect of different stocking density on growth, survival and production of endangered native fish climbing perch (Anabas testudineus, Bloch) fingerlings in nursery ponds. Advances in Environmental Biology, 4(2), 178–187.
87.Rahmatullah, R., Das, M., and Rahmatullah, S.M. (2010). Suitable stocking density of tilapia in an aquaponic system. Bangladesh Journal of Fisheries Research, 14(1–2), 29–35.
88.Rakocy, J., Bailey, D., Shultz, R. and Thoman, E. (2010). Update on tilapia and vegetable production in the UVI aquaponic system. In: Bolivar, R.B., Mair, G.C., and Fitzsimmons, K. Eds. Proceedings from the Sixth International Symposium on Tilapia in Aquaculture, 676–690, Manila, Philippines. https://www.researchgate.net/publication/237308635_Update_on_tilapia_and_vegetable_production_in_the_UVI_aquaponic_system
89.Rakocy, J., Shultz, R. C., Bailey, D. S. and Thoman, E. S. (2004). Aquaponic production of tilapia and basil: comparing a batch and staggered cropping system. Acta Horticulturae, 648, 63–69.
90.Rana, K. M., Jahan, M., Ferdous, Z., Salam, Md. (2018). Production performance of lettuce (Lactuca sativa): aquaponics versus traditional soil. Asian Journal of Medical and Biological Research, 4, 149–156.
91.Ranganathan, J. (2013). The Global Food Challenge Explained in 18 Graphics. World Resources Institute. https://www.wri.org/blog/2013/12/global–food–challenge–explained–18–graphics
92.Rasul, M. G., Majumdar, B. C., Akter, T. (2017). Aqua–chemicals and Antibiotics Used in Freshwater Aquaculture of Sylhet, Bangladesh. Journal of Agricultural Science and Engineering, 3(2), 20–26.
93.Rodgers, C., and Furones, M.D. (2009). Antimicrobial agents in aquaculture: Practice, needs and issues. In: Rodgers, C. and Basurco, B. ed. The use of veterinary drugs and vaccines in Mediterranean, Aquaculture, Edition: Options Méditerranéennes, Series A, Mediterranean Seminars, 41–59, CIHEAM.
94.Roosta. H. R. (2014). Effects of foliar spray of k on mint, radish, parsley and coriander plants in aquaponic system. Journal of Plant Nutrition, 37, 2236– 2254.
95.Sace, C. F., and Fitzsimmons, K. M. (2013). Vegetable production in a recirculating aquaponic system using Nile tilapia (Oreochromis niloticus) with and without freshwater prawn (Macrobrachium rosenbergii). Academia Journal of Agricultural Research, 1(12), 236–250.
96.Saha, S., Monroe, A., and Day, M. R. (2016). Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems. Annals of Agricultural Sciences, 61, 181–186.
97.Sahid, N. A., Hayati, F., Rao, C. V., Ramely, R., Sani, I., Dzulkarnaen, A., Zakaria, Z., Hassan, S., Zahari, A., and Ali, A. A. (2018). Snakehead consumption enhances wound healing? from tradition to modern clinical practice: a prospective randomized controlled trial. Evidence–Based Complementary and Alternative Medicine, Article ID 3032790.
98.Saputra, A., Budiardi, T., Samsudin, R., and Rahmadya, N. D. (2018). Growth performance and survival of snakehead Channa striata juvenile with different stocking density reared in recirculation system. Jurnal Akuakultur Indonesia, 17(2), 104–112.
99.Sauthier, N., Grasmick, A., and Blancheton, J. P. (1998). Biological denitrification applied to a marine closed aquaculture system. Water Resources, 32 (6), 1932–1938.
100.Shete, A. P., Verma, A. K., Chadha, N. K., Prakash, C., Peter, R. M., Ahmad, I., and Nuwansi, K. K. T. (2016). Optimization of hydraulic loading rate in aquaponic system with Common carp (Cyrinus carpio) and Mint (Mentha arvensis). Aquaculture Engineering, 72, 53–57.
101.Sinh, L. X., Navy, H., Pomeroy, R. (2014). Value chain analysis of snakehead fish in the lower Mekong Basin of Cambodia and Vietnam. Aquaculture Economics & Management, 18(1), 76–96.
102.So, N., Leng, S. V., Somany, P., Le, X. S., and Pomeroy, R. (2009). Snakehead culture in the Mekong Delta of Vietnam. Trip Report of AquaFish CRSP USAID Grant No.: EPP–A–00–06–00012–00. Inland Fisheries Research and Development Institute, Phnom Penh. http://ifredi–cambodia.org/wp–content/uploads/2004/01/So_Nam_etal_2009_final_techncial–report_Invest2.pdf
103.Sokal, R. and Rohlf, F. J. (1995). Biometry. The Principles and Practice of Statistics in Biological Research. 3rd ed, W. H. Freeman and Company, San Francisco, USA.
104.Somerville, C., Cohen, M., Pantanella, E., Stankus, A., and Lovatelli, A. (2014). Small–scale aquaponic food production. Integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper No. 589. Rome, FAO.
105.Statistics Market Research Consulting. (2019). Aquaponics – Global Market Outlook (2017–2026). Report ID: 4757805. https://www.researchandmarkets.com/reports/4757805/aquaponics–global–market–outlook–2017–2026
106.Suhl, J., Dannehl, D., Kloas, W., Baganz, D., Jobs, S., Scheibe, G., and Schmidt, U. (2016). Advanced aquaponics: evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agricultural Water Management, 178, 335–344.
107.Sunnya, A. R., Islam, M. M., Rahman, M., Miah, M. Y., Mostafiz, M., Islam, N., Hossain, M. Z., Chowdhury, M. A., Islame, M. A., and Keus, H. J. (2019). Cost effective aquaponics for food security and income of farming households in coastal Bangladesh. Egyptian Journal of Aquatic Research, 45(1), 89–97.
108.Syafiqah, S., Abentin, E., Masran, T., Amran, H., Salleh, O., and Saleem, M. (2015). Growth Performance of Tomato Plant and Genetically Improved Farmed Tilapia in Combined Aquaponic Systems. Asian Journal of Agricultural Research., 9, 95–103.
109.Tacon, A. G. J. (2018). Global Trends in Aquaculture and Compound Aquafeed Production: 1984–1996 highlights. In: Brufau, J. and Tacon, A. G. J. (ed.) Feed Manufacturing in Mediterranean region: Recent advances in research and technology, 107–122, CIHEAM. http://www.aquahana.com/wp–content/uploads/2018/06/TaconWAS.pdf
110.Tep Bac News. (2016). Báo động tình trạng nuôi cá lóc ảnh hưởng đến môi trường ở Vĩnh Châu. https://tepbac.com/tin–tuc/full/bao–dong–tinh–trang–nuoi–ca–loc–anh–huong–den–moi–truong–o–vinh–chau–18570.html
111.Thua Thien Hue News. (2017). Nuôi cá lóc tự phát - Hậu quả nhãn tiền. http://baothuathienhue.vn/nuoi–ca–loc–tu–phat–hau–qua–nhan–tien–a38378.html
112.Tidwell, J. H. and Allan, G. L. (2001). Fish as food: aquaculture’s contribution: Ecological and economic impacts and contributions of fish farming and capture fisheries. EMBO Reports 2001, 2, 958–963.
113.Tieu, Q. S., Duong, N. L., and Lam, M. L. (2013). Ảnh hưởng của mật độ lên tăng trưởng, tỷ lệ sống và hiệu quả tài chính của mô hình ương nuôi cá lóc (channa striata) thương phẩm trong bể lót bạt. Science Journal of Can Tho University. Can Tho University, Vietnam. (in Vietnamese)
114.Tilman, M. and Clark, C. (2014). Global diets link environmental sustain–ability and human health. Nature, 515, 518–524.
115.Tilmana, D., Balzerb, C., Hill, J., and Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20260–20264.
116.Tim, S., Craig, H., Janet, R., Brian, L., Richard, W., Robert, W., Ayesha, D., and Ralph H. (2013). Creating a Sustainable Food Future: A menu of solutions to sustainably feed more than 9 billion people by 2050. World resources report 2013–14: Interim Findings, World Resources Institute. https://wedocs.unep.org/bitstream/handle/20.500.11822/10731/CreatingSustainableFoodFuture.pdf?amp%3BisAllowed=&sequence=1
117.Tra Vinh Department of Natural Resources and Environment (TV DONRE) (2014). http://tnmttravinh.gov.vn/wps/portal/tintuc/
118.Tra Vinh General Statistics Office (GSO). (2019). http://thongketravinh.vn/
119.Tridge. (2019). Snakehead Fish. https://www.tridge.com/intelligences/snakehead–fish/VN
120.Tuoi Tre News. (2019). https://tuoitre.vn/ho–chan–nuoi–ca–loc–vo–tu–xa–thai–nong–dan–keu–troi–vi–nuoc–o–nhiem–2019051710480249.htm
121.United Nations (UN). (2019). World Urbanization Prospects 2018: Highlights. Population Division. Department of Economic and Social Affairs, United Nations, New York, USA. https://population.un.org/wup/Publications/Files/WUP2018–Highlights.pdf
122.Ut, V. N., Linh, N. Q., and Giang, H. T. (2016). Potential aquaponic culture in the Mekong Delta. 1st International Conference on Tropical Animal Science and Production Proceeding. V2, 72–75.
123.Van Rijn, J. (2013). Waste treatment in recirculating aquaculture systems. Aquacultural Engineering, 53, 49–56.
124.Van, P. T. T., and Thich, C. V. (2014). Ảnh hưởng số lần cho ăn lên tốc độ tăng trưởng của cá lóc (Channa striata) nuôi trong hệ thống tuần hoàn. An Giang University Journal Science, 4, 79–84. (In Vietnamese) Available online: http://www.agu.edu.vn:8080/bitstream/AGU_Library/2618/1/Bai%2014–phan%20Thi%20Thanh%20Van%20va%20Cao%20Van%20Thich.pdf.
125.Vel Murugan, A., Swarnam, T. P. (2013) Nitrogen release pattern from organic manures applied to an acid soil. Journal of Agricultural Science, 5(6), 174–184.
126.Velichkova, K., Sirakov, I., Stoyanova, S., and Staykov, Y. (2019). Cultivation of lettuce (Lactuca sativa L.) and rainbow trout (Oncorhynchus mykiss W.) in the aquaponic recirculation system. Journal of Central European Agriculture, 20, 967–973.
127.Verdegem, M. C. J. (2013). Nutrient discharge from aquaculture operations in function of system design and production environment. Reviews in Aquaculture, 5, 158–171.
128.Walter, R., C. and James, D. W. (2004). Snakeheads (Pisces, Channidae) – A Biological Synopsis and Risk Assessment. U.S. Geological Survey Circular 1251.
129.Wang, W., Yang, X., Liu, H., Huang, Z., and Wu, G. (2005). Effect of Oenanthe javanica flavone on human and duck hepatitis B virus infection. Acta Pharmacologica Sinica, 26, 587–592.
130.Xia, Y., Yu, E., Li, Z., Yu, D., Wang, G. J., Xie, J., Gong, W. K., Zhang, K. (2017). Bacterial community composition associated with freshwater cyanobacterial blooms of intensive culture ponds. Nature Environment and Pollution Technology, 16, 1059–1066.
131.Yang, J. H., Kim, S. C., Shin, B. Y., Jin, S.H., Jo, M. J., Jegal, K. H., Kim, Y. W., Lee, J. R., Ku, S. K., Cho, I. J., and Ki, S. H. (2013). O–methylated flavonol isorhamnetin prevents acute inflammation through blocking of NF–κB activation. Food and Chemical Toxicology, 59, 362–372.
132.Yang, S. A., Jung, Y. S., Lee, S. J., Park, S. C., Kim, M. J., Lee, E. J., Byun, H. J., Jhee, K. H., and Lee, S. P. (2014). Hepatoprotective effects of fermented field water–dropwort (Oenanthe javanica) extract and its major constituents. Food and Chemical Toxicology, 67, 158–160.
133.Zakaria, Z. A., Somchit, M. N., Sulaiman, M. R., and Mat, J. A. M. (2004). Preliminary investigation on the antinociceptive activity of Haruan (Channa striatus) fillet extract with various solvent system. Pakistan Journal of Biological Sciences,7(10),1706–1710.



電子全文 電子全文(網際網路公開日期:20231231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔