跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/22 19:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陸又瑄
研究生(外文):LU, YU-HSUAN
論文名稱:離心式濃度梯度光碟之最佳化測試
論文名稱(外文):The optimization of centrifugal concentration gradient generator
指導教授:李亦宸
指導教授(外文):LI, YI-CHEN
口試委員:施志欣李亦淇
口試委員(外文):SHIH, CHIH-HSINLEE, I-CHI
口試日期:2020-06-11
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:66
中文關鍵詞:離心微流控技術濃度梯度發生器藥物測試系統
外文關鍵詞:Centrifugal microfluidicsConcentration gradient generatorDrug system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微流體技術為藥物測試領域提供了大規模的技術進步,可減少試劑/樣品的消耗,其具備著極短時間的實驗過程。這項研究提出了一種簡單且低成本的濃度梯度產生器(Concentration Gradient Generator, CGG),可用於快速地測試藥物對以細胞組成的類器官之影響。本研究將CGG雕刻在具有多微通道結構的離心光碟上,並將3D微組織培養室雕刻於離心盤上。通過這種設計,將使用離心控制系統代替泵來為微通道中的流體運動提供驅動力,並且產生濃度梯度流直接進入培養室培養細胞。此外,培養室也被設計為微孔陣列,該微孔陣列賦予培養室得以產生3D微組織的能力,與傳統的2D培養相比,微流體平台可以為快速藥物篩選提供更好的結果,為藥物測試平台進一步實現了便攜式“光碟上實驗室”系統的概念。
Microfluidic technology offers a large-scale laboratory strategy in drug testing field to reduce reagent/sample consumption, parallel processing, and short turn-around time. This study proposes a simple and low-cost concentration gradient generator (CGG) for rapidly testing the drug effects on cellular organoids. The CGG was sculpted on a centrifugal disk with a multi-microchannel structure and a 3D microtissue culture chamber will be sculpted on a centrifugal disk. By this design, a centrifugal control system as a strategy instead of a pump will be used to provide a driving force for the flow movement in the microchannels. Then, the concentration gradient flow could be generated and directly enter into the culture chamber for treatment of cells. Additionally, the culture chamber was also designed as a micro-hole array endowing the culture chamber with an ability to generate the 3D microtissues. Compared with the traditional 2D culture wells, the microfluidic platform could offer a better confidence in rapid drug screening and further achieving a concept of portable “lab-on-a-disk” systems for the applications of drug testing.
致  謝 I
摘  要 II
ABSTRACT III
目 錄 IV
圖 目 錄 VII
第一章 緒論 1
1.1 前言 1
1.2 濃度梯度效應 4
1.3 研究動機 5
第二章 文獻回顧 6
2.1 微流體技術簡介 6
2.2 不同驅動力之微流體 9
2.2.1 超聲波驅動 9
2.2.2 電滲流驅動 11
2.2.3 磁場驅動 14
2.2.4 壓力驅動 15
2.2.5 離心力驅動 17
2.3 不同梯度產生器之回顧 20
第三章 實驗設計 23
3.1 實驗藥品與材料 23
3.1.1 實驗藥品 23
3.1.2 實驗材料 23
3.2 實驗儀器 24
3.3 碟片設計與製作 25
3.3.1 碟片設計 25
3.3.2 碟片製作 26
3.4 細胞晶片設計與製作 27
3.4.1 細胞晶片設計 27
3.4.2 細胞晶片製作 28
3.5 離心式梯度產生器操作流程 29
3.6 實驗分析 30
3.6.1 分析儀器 30
3.6.2 量化分析 31
第四章 結果與討論 33
4.1 第一代離心式微流體梯度產生器 33
4.1.1 第一代離心式梯度產生器 33
4.1.2 以色素模擬之離心實驗 34
4.2 第二代離心式微流體梯度產生器 36
4.2.1 第二代離心式梯度產生器 36
4.2.2 以色素模擬之離心實驗 37
4.3 第三代離心式微流體梯度產生器 39
4.3.1 第三代離心式梯度產生器 39
4.3.2 以色素模擬之離心實驗 40
4.4 第三代離心式光碟之量化分析 42
4.5 轉速對細胞活性之影響 46
4.6 細胞晶片之分析 49
第五章 結論 50
第六章 未來展望 51
第七章 參考文獻 52


1.Atencia, J., et al. (2009). "The microfluidic palette: a diffusive gradient generator with spatio-temporal control." Lab on a Chip 9(18): 2707-2714.

2.Dekker, L. V. and A. W. Segal (2000). "Signals to move cells." Science 287(5455): 982-985.

3.Deshmukh, A. A., et al. (2000). Continuous micromixer with pulsatile micropumps. Technical Digest of the IEEE Solid State Sensor and Actuator Workshop (Hilton Head Island, SC).

4.Duffy, D. C., et al. (1999). "Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays." Analytical Chemistry 71(20): 4669-4678.

5.Foxman, E. F., et al. (1999). "Integrating conflicting chemotactic signals: the role of memory in leukocyte navigation." The Journal of cell biology 147(3): 577-588.

6.Glasgow, I., et al. (2004). "Electroosmotic mixing in microchannels." Lab on a Chip 4(6): 558-562.

7.Ismagilov, R. F., et al. (2001). "Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch." Analytical chemistry 73(19): 4682-4687.

8.Janetopoulos, C., et al. (2004). "Chemoattractant-induced phosphatidylinositol 3, 4, 5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton." Proceedings of the National Academy of Sciences 101(24): 8951-8956.

9.Johnson, R. D., et al. (2001). "Development of a fully integrated analysis system for ions based on ion-selective optodes and centrifugal microfluidics." Analytical Chemistry 73(16): 3940-3946.

10.Ko, J., et al. (2019). "Human Ocular Angiogenesis‐Inspired Vascular Models on an Injection‐Molded Microfluidic Chip." Advanced healthcare materials 8(15): 1900328.

11.Lawrence, M. B. and T. A. Springer (1991). "Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins." Cell 65(5): 859-873.

12.Li, C., et al. (2009). "Rapid discrimination of single‐nucleotide mismatches based on reciprocating flow on a compact disc microfluidic device." Electrophoresis 30(24): 4270-4276.

13.Li, Y.-C., et al. (2015). "Programmable laser-assisted surface microfabrication on a poly (vinyl alcohol)-coated glass chip with self-changing cell adhesivity for heterotypic cell patterning." ACS applied materials & interfaces 7(40): 22322-22332.

14.Lin, C.-H., et al. (2004). "Microfluidic T-form mixer utilizing switching electroosmotic flow." Analytical chemistry 76(18): 5265-5272.

15.Lorenz, J., et al. (2006). "Electroplating of micro-patterned tools via replication of silicone rubber forms." Microsystem technologies 12(9): 870-876.

16.Müller, A., et al. (2001). "Involvement of chemokine receptors in breast cancer metastasis." nature 410(6824): 50-56.

17.Matsuo, I. and C. Kimura-Yoshida (2014). "Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian embryogenesis." Philosophical Transactions of the Royal Society B: Biological Sciences 369(1657): 20130545.

18.McDonald, J. C. and G. M. Whitesides (2002). "Poly (dimethylsiloxane) as a material for fabricating microfluidic devices." Accounts of chemical research 35(7): 491-499.

19.Nouri, D., et al. (2017). "Rapid mixing in micromixers using magnetic field." Sensors and Actuators A: Physical 255: 79-86.

20.Tang, M., et al. (2018). "A linear concentration gradient generator based on multi-layered centrifugal microfluidics and its application in antimicrobial susceptibility testing." Lab on a Chip 18(10): 1452-1460.

21.Van Den Berg, A. and P. Bergveld (1995). Micro total analysis systems, Springer.

22.Wang, S.-C., et al. (2004). "Microfluidic mixing by dc and ac nonlinear electrokinetic vortex flows." Industrial & engineering chemistry research 43(12): 2902-2911.

23.Yang, Z., et al. (2001). "Ultrasonic micromixer for microfluidic systems." Sensors and Actuators A: Physical 93(3): 266-272.

24.Yaralioglu, G. G., et al. (2004). "Ultrasonic mixing in microfluidic channels using integrated transducers." Analytical chemistry 76(13): 3694-3698.

25.Zhang, Z., et al. (2018). "Scalable Multiplexed Drug‐Combination Screening Platforms Using 3D Microtumor Model for Precision Medicine." Small 14(42): 1703617.

26.Zheng, G.-x., et al. (2014). "Marine phytoplankton motility sensor integrated into a microfluidic chip for high-throughput pollutant toxicity assessment." Marine pollution bulletin 84(1-2): 147-154.

27.张颖, et al. (2008). 微流动的尺寸效应.

28.陈宏 (2005). 微流控芯片液-液萃取和多相层流技术的研究, 浙江大学.

電子全文 電子全文(全文開放日期20250801,本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top