跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 08:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱恆正
研究生(外文):ZHU, HENG-CHENG
論文名稱:生質物在高比例水蒸氣下氣化之研究
論文名稱(外文):The Studies of Biomass Gasifiaction Under the Steam Rich Condition
指導教授:張振昌
指導教授(外文):Alex C.-C. Chang
口試委員:呂晃志林國興
口試委員(外文):LEU, HOANG-JYHLIN, KUO-HSIN
口試日期:2020-07-15
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:86
中文關鍵詞:田口實驗設計稻殼水氣合成氣氣化
外文關鍵詞:Taguchi experimental designrice husksteamsyngasgasification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
誌 謝 I
摘 要 II
Abstract III
目錄 IV
圖目錄 IX
表目錄 XI
第一章 緒論 1
1-1前言 1
1-2研究動機 2
第二章 文獻回顧 3
2-1再生能源 3
2-1-1再生能源的定義 3
2-1-2再生能源的種類 3
2-1-3生質物與生質能源 4
2-1-3-1生質物的定義以及來源 4
2-1-3-2何謂生質能源 4
2-1-4生質能源的轉換特性 5
2-2氣化技術 9
2-2-1發展歷史 9
2-2-2氣化原理 10
2-2-3氣化爐種類 13
2-2-4氣化程序 17
2-2-4-1預熱前處理程序 17
2-2-4-2氣化反應程序 21
2-2-4-3產物純化分離程序 24
2-3觸媒輔助氣化 26
2-4田口方法 29
2-4-1歷史回顧 29
2-4-2實驗設計 29
2-4-3實驗設計因子 30
2-4-4直交表 31
2-4-5信號雜訊比 31
2-4-6 實驗驗證 32
第三章 實驗方法及流程 33
3-1實驗目的及方法 33
3-2實驗規劃 33
3-2-1田口實驗設計法 34
3-2-2稻殼觸媒共氣化 36
3-3料源性質分析 37
3-4觸媒製備 37
3-4-1 白雲石觸媒 37
3-4-2橄欖石觸媒 38
3-4-3鎳金屬搭載铈基底觸媒 38
3-5氣化反應實驗及分析 39
3-6氣化爐本體及週邊設備 40
第四章 實驗結果 41
4-1料源及觸媒分析 41
4-1-1稻殼基本性質分析 41
4-1-2掃描式電子顯微鏡分析 42
4-2氣化實驗及分析 44
4-2-1 在高比例水蒸氣下氣化稻殼 44
4-2-2焦油的濃度分析 51
4-2-3焦油的質譜分析 51
第五章 結果討論與未來展望 54
附錄 56
附錄 A: 實驗化學藥品與儀器 56
附錄A-1:實驗化學藥品 56
附錄A-2:實驗儀器 57
附錄A-3:實驗所用氣體 58
附錄A-4:儀器、藥品供應商資料 59
附錄B:氣化爐本體及周邊設備 62
附錄B-1:氣化床爐體 62
附錄B-2:冷卻採樣系統 63
附錄B-3:連續取樣系統 64
附錄B-4:氣體進料系統 65
附錄B-5:水蒸氣製造系統 66
附錄B-6:料源進料系統 67
附錄C:氣化反應實驗及結果分析 68
附錄C-1:料源前處理 68
附錄C-2:料源進料速率校正 69
附錄C-3:氣化爐氣化反應參數 70
附錄C-4:氣化實驗步驟 71
附錄C-5:反應結果分析 72
附錄D:分析設備及方法 73
附錄D-1:三成份分析 73
附錄D-2:元素分析 75
附錄D-3:檢測分析儀 77
附錄D-4:氣相色層分析儀 79
附錄D-5:超高解析熱電子型場發射掃描式電子顯微鏡 81
附錄D-6:氣相層析質譜儀分析 82
參考文獻 83

[1]吳晟, 明日綠色能源之星-氫能源, 能源報導-他山之石, vol. 2, p. 33, 2004.
[2]呂錫民, 氣化技術, 科學發展, vol. 435, pp. 62-66, 2009.
[3]T. Reed, A. Das, "Handbook of Biomass Downdraft Gasifier Engine Systems", The Biomass Energy Foundation Press, 1988.
[4]E. Nehrenheim, "Introduction to Renewable Energy", Encyclopedia of the Anthropocene, vol. 1, 2018, pp. 405-406.
[5]Qi Li, Yang Liu, Shaohua Guo, Haoshen Zhou, "Solar energy storage in the rechargeable batteries", nanotoday, vol. 16, 2017, pp. 46-60.
[6]P. Bechtle, M. Schelbergen, R. Schmehl, U. Zillmann, S. Watson, "Airborne wind energy resource analysis", Renewable Energy, vol. 141, 2019, pp. 1103-1116.
[7]J. Amoah, P. Kahar, C. Ogino, A. Kondo, "Bioenergy and Biorefinery: Feedstock, Biotechnological Conversion, and Products", Biotechnology Journal, vol. 16, 2019.
[8]R. Loisel, M. Sachez-Angulo, F. Schoefs, A. Gaillard, "Integration of tidal range energy with undersea pumped storage", Renewable Energy, vol. 126, 2018, pp38-48.
[9]J. Zhanh, C. Xu, Z. Song, Y. Huang, Y. Wu, "Decision framework for ocean thermal energy plant site selection from a sustainability perspective: The case of China", Journal of Cleaner Production, vol. 225, 2019, pp. 771-784.
[10]P. Basu, "Appendix A - Definition of Biomass", Biomass Gasification, Pyrolysis and Torrefaction (Third Edition), 2018, pp. 497-499.
[11]能源科技研究發展白皮書, 經濟部能源局, 2007, pp. 116-134.
[12]能源產業技術白皮書, 經濟部能源局, 2014, pp. 219-236.
[13]B. t. Chemical, E. B. t. L. Biofuels, and G. W. Huber, Breaking the chemical and engineering barriers to lignocellulosic biofuels: next generation hydrocarbon biorefineries: Citeseer, 2008.
[14]D. Das and T. N. Veziroglu, Advances in biological hydrogen production processes. International Journal of Hydrogen Energy, 2008.
[15]Sørensen and Bent, Renewable Energy., 2004 USA: Burlington.
[16]P. Hallenbeck, D. Ghosh, "Advances in fermentative biohydrogen production: the way forward? ", Trends in Biotechnology, vol.27, 2009, pp. 287-297.
[17]Kırtay and Elif, "Recent advances in production of hydrogen from biomass", Energy Conversion and Management, 2011. 52(4): p. 1778-1789.
[18]蔡呈佑, 生質物-二氧化碳共氣化產製合成氣之研究, 碩士, 化學工程學系, 逢甲大學, 2014.
[19]Luiz A. Junior Letti, ... Carlos R. Soccol, "Solid-State Fermentation for the Production of Mushrooms", Current Developments in Biotechnology and Bioengineering, 2018.
[20]P. K. Rai, S. P. Singh, "Integrated dark- and photo-fermentation: Recent advances and provisions for improvement", International Journal of Hydrogen Energy, vol. 41, 2016, pp. 19957-19971.
[21]J.Mularski, H. P. Kruczek, N. Modlinski "A review of recent studies of the CFD modelling of coal gasification in entrained flow gasifiers, covering devolatilization, gas-phase reactions, surface reactions, models and kinetics", Fuel, vol. 271, 2020.
[22]B. Acharya, Chemical looping gasification of biomass for hydrogen-enriched gas production, 2011.
[23]Das, Debabrata, and T Nejat Veziroǧlu, Hydrogen production by biological processes: a survey of literature, International Journal of Hydrogen Energy, 2001. 26(1): p. 13-28.
[24]Kırtay and Elif, "Recent advances in production of hydrogen from biomass.," Energy conversion and management, 2011. 52(4): p. 1778-1789.
[25]李宏台、吳耿東, 廢棄物氣化技術, 工程月刊, vol. 74, pp. 85-96, 2001.
[26]王毅傑, 汙泥-稻殼共氣化產製合成氣之研究, 碩士, 化學工程學系, 逢甲大學, 2017.
[27]C. Franco, F. Pinto, I. Gulyurtlu, and I. Cabrita, The study of reactions influencing the biomass steam gasification process, Fuel, vol. 82, pp. 835-842, 2003.
[28]P. Lv, J. Chang, Z. Xiong, H. Huang, C. Wu, Y. Chen, et al., Biomass air-steam gasification in a fluidized bed to produce hydrogen-rich gas, Energy & Fuels, vol. 17, pp. 677-682, 2003.
[29]H. G. Song, Y. N. Chun, "Tar decomposition-reforming conversion on microwave-heating carbon receptor", Energy, vol. 199, 2020.
[30]C.Li, K. Suzuki, "Resources, properties and utilization of tar", Resources, Conservation and Recycling, vol. 54, 2010, pp. 905-915.
[31]C. Li and K. Suzuki, Tar property, analysis, reforming mechanism and model for biomass gasification—an overview, Renewable and Sustainable Energy Reviews, vol. 13, pp. 594-604, 2009.
[32]張隆翔, 焦油重組產製合成氣之研究, 碩士, 化學工程學系, 逢甲大學, 2014.
[33]A. Bridgwater, Renewable fuels and chemicals by thermal processing of biomass, Chemical Engineering Journal, vol. 91, pp. 87-102, 2003.
[34]J. Bermudez, B. Fidalgo, "15-Production of bio-syngas and bio-hydrogen via gasification", Handbook of Biofuels Production (Second Edition), 2016, pp. 431-494.
[35]A. Burton and H. Wu, "Influence of biomass particle size on bed agglomeration during biomass pyrolysis in fluidised bed," Proceedings of the Combustion Institute, vol. 36, pp. 2199-2205, 2017/01/01/ 2017.
[36]IEA, "Fact Sheets on Biomass Gasification – Biomass for Gasification", 2015.
[37]V. Kirubakaran, V. Sivaramarkrishnan, R. Nalini, T. Sekar, M. Premalatha, P. Subramanian, "A review on gasification of biomass", Renewable and Sustainable Energy Reviews, vol. 13, 2009, pp. 179-186.
[38]P. Quaak, H. Knoef, H. Stassen, "Energy form Biomass – A Review of Combustion and Gasification Technologies", World Bank, Washington, DC, 1999.
[39]ECN, Phyllis, "Database for Biomass and Waste", 2015.
[40]T. Bridgwater, "Biomass for energy", Journal of the Science of Food and Agriculture, 2006, pp. 1755-1768.
[41]P. Basu, Biomass Gasification, Pyrolysis and Torrefaction 2013.
[42]詹宥駿, 煤炭-稻殼共氣化產製合成氣之研究, 碩士, 化學工程學系, 逢甲大學, 2014.
[43]H. D. Lasa, et al. "Catalytic steam gasuification of biomass: catalists, thermodynamics and kinetics", Chemical Reviews, 2011, pp. 5404-5433.
[44]M. M. Yung, W. S. Jablonski, K. A. Magrini-Bair, "Review of catalytic conditioning of biomass-derived syngas", Energy ﹠Fuels, 2009, pp. 1874-1887.
[45]C. Xu, et al. "Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification", Fuel, 2010, pp. 1784-1795.
[46]G. W. Huber, S. Iborra, A. Corma, "Synthesis of transportation fuels from biomass: chemisty, catalysts, and rngineering", Chemical Reviews, 106(9) (2006), 99. 4044-4098.
[47]L. Devi, K. J. Ptasinski, and F. J. Janssen, A review of the primary measures for tar elimination in biomass gasification processes, Biomass and Bioenergy, vol. 24, pp. 125-140, 2003.
[48]A. Kumar, D. D. Jones, and M. A. Hanna, Thermochemical biomass gasification: a review of the current status of the technology, Energies, vol. 2, pp. 556-581, 2009.
[49]R. M. Navarro, M. A. Pena, J. L. G. Fierro, "Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass", Chemical Review, 2007, pp. 3952-3991.
[50]J. P. Cao, X. Huang, X. Y. Zhao, X. Y. Wei, T. Takarada, "Nitrogwn transformation during gasification of livestock compost over transition metal and Ca-based catalys", Fuel, 2015, pp. 477-483.
[51]X. Y. Zhao, J. Ren, J. P. Cao, F. Wei, C. Zhu, X. Fan, Y. P. Zhao, X. Y. Wei, "Catalytic reforming of volatiles from biomass pyrolysis for hydrogen-rich gas production over limonite ore", Energy Fuel, 2017, pp. 4054-4060.
[52]G. Hu, S. Xu, S. Li, C. Xiao, S. Liu, "Fuel Process. Technol, 2006, pp. 375-382.
[53]M. W. Islam, "A review of dolomite catalyst for biomass gasification tar removal", Fuel, vol. 267, 2020.
[54]Srinakruang, Jumluck, Kazuhiro Sato, Tharapong Vitidsant, Kaoru Fujimoto, Highly efficient sulfur and coking resistance catalysts for tar gasification with steam. Fuel, 2006. 85(17): p. 2419-2426.
[55]Lit, XH, T Mi, ZS We, YF Chen, QX Wu. The Cracking Experiment Research of Tar by CaO Catalyst. in Proceedings of the 20th International Conference on Fluidized Bed Combustion. 2010. Springer.
[56]S. Rapagnà, K. Gallucci, M. Di Marcello, M. Matt, M. Nacken, S. Heidenreich, et al., "Gas cleaning, gas conditioning and tar abatement by means of a catalytic filter candle in a biomass fluidized-bed gasifier," Bioresource Technology, vol. 101, pp. 7123-7130, 2010/09/01/ 2010.
[57]R. Rauch, K. Bosch, H. Hofbauer, D. Swierczynski, C. Courson, "Comparison of different olivines for biomass steam gasification", Sci. Therm. Chem. Biomass Convers, 2006, pp.799-809.
[58]F. P. Nagel, T. J. Schildhauer, N. McCaughey, S. M. A. Biollaz, "Biomass-integrateed gasification fuel cell systems – Part 2:economic analysis", Hydrogen Energy, 2009, pp. 6826-6844.
[59]G. Guan, M. Kaewpanha, X. Hao, A. Abudula, "Catalytic steam reforming of biomass tar: prospects and challenges", Renew Sustain Energy Rev, 2016, pp.450-461.
[60]Sutton, David, Brian Kelleher, Julian RH Ross, Review of literature on catalysts for biomass gasification. Fuel Processing Technology, 2001. 73(3): p. 155-173.
[61]J. Ren, Jing-Pei Cao, Xiao-Yan Zhao, Fei-Long Yang, Xian-Yong Wei, "Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models", Renewable and Sustainable Energy Reviews, vol. 116, 2019.
[62]李輝煌, 田口方法: 品質設計的原理與實務 第四版 第一章 田口方法概論 高立圖書, 2011.
[63]李輝煌,"田口方法:品質設計的原理與實務",高立圖書有限公司出版,2008年。

電子全文 電子全文(全文開放日期20250801,本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊