(3.238.186.43) 您好!臺灣時間:2021/02/28 10:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃芝潔
研究生(外文):HUANG, JHIH-JIE
論文名稱:開發電鍍銅液中有機添加劑之感測器
論文名稱(外文):Development of Sensor for Detection of Organic Additives in Copper Plating Baths
指導教授:翁于晴翁于晴引用關係
指導教授(外文):WENG, YU-CHING
口試委員:周澤川杜景順翁于晴
口試委員(外文):CHOU, TSE-CHUANDO, JING-SHANWENG, YU-CHING
口試日期:2020-07-21
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:100
中文關鍵詞:感測器鍍銅添加劑網印奈米金電極
外文關鍵詞:SensorsCopper plating additivesScreen-printed nano-Au electrode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在印刷電路板 (PCB) 、矽通孔 (TSV) 與玻璃通孔 (TGV) 這些高科技產業封裝的鍍銅製程中,為了達到無缺陷的填洞效果,需要加入適當的有機添加劑,包含加速劑、抑制劑、平整劑來控制電鍍的品質,有機添加劑的起伏會造成產品缺陷,增加成本並降低製造效能,因此開發偵測有機添加劑濃度的感測器相當重要,如何快速與準確偵測有機添加劑在鍍液中的濃度是一個具有挑戰性以及具備產業迫切需求性的問題。目前工業界偵測有機添加劑,只能以離線的方式取樣來量測有機添加劑的濃度,而量測的方法是採用間接的循環剝離法偵測銅含量,確認銅剝離之電量來反推有機添加劑的含量,本研究嘗試利用三種不同的電化學方法 (線性掃描伏安法、微分脈衝伏安法、方波伏安法) 來量測商用鍍銅之有機添加劑的濃度,有別於傳統透過添加劑影響電鍍銅沉積動力學來間接判定有機添加劑的濃度,避開銅沉積與剝離的電位範圍,直接偵測有機添加劑濃度。
電化學分析結果證明,利用網印奈米金電極透過三種電化學方法其電流值都與三種添加劑濃度有良好的線性關係,可由量測結果得知SWV (Square Wave Voltammetry) 之靈敏度為最高,靈敏度由高到低排序為SWV > DPV > LSV。
表面特性與晶型結構分析結果證明,網印奈米金電極表面只有金之成份且電極反應前與反應後之電極表面上並無太大差異;電極耐用度分析結果證明,網印奈米金電極之靈敏度會隨著使用次數上升而下降。

In the copper plating process of high-tech packaging process such as PCB (Printed Circuit Boards), TSV (Through Silicon Via) and TGV (Through Glass Via), in order to achieve defect-free cavitation, it is necessary to add appropriate organic additives, including accelerators, inhibitors, and levelers to control the quality of electroplating the fluctuation of organic additives will cause product defects, increase costs and reduce manufacturing efficiency, it is very important to develop a sensor that detects the concentration of organic additives. How to quickly and accurately detect the concentration of organic additives in the plating solution is a challenging and urgently demanding problem in the industry. At present, the copper plating industry can only detect the concentration of organic additives by taking samples offline. The measurement method is to use Cyclic Voltammetric Stripping method to detect the copper content and confirm the amount of copper stripping to reverse the content of organic additives. Three different electrochemical methods LSV (Linear Scanning Voltammetry), DPV (Differential Pulse Voltammetry) and SWV (Square Wave Voltammetry) are used to measure the concentration of organic additives in commercial copper plating, which is different from traditional additives that affect the electroplating copper deposition kinetics. To indirectly determine the concentration of organic additives, avoid the potential range of copper deposition, and directly detect the concentration of organic additives.
Using screen-printed nano-Au electrode through the three electrochemical methods, proving that the current values of the three electrochemical methods have a good linear relationship with the concentration of the three types of additives. The series measurement results can reflect that the sensitivity of SWV is the highest. SWV the linearity is higher than other detection modes, and the sensitivity from high to low is SWV > DPV > LSV.
The surface characteristics and crystal structure analysis results prove that the surface of the screen-printed nano-Au electrode only have Au and there is no obviously difference between the electrode surface before and after the experiment; the electrodes durability analysis results prove that the screen-printed nano-Au electrode of the sensitivity of the electrode will decrease as the using times increase.

致謝 I
摘要 II
ABSTRACT IV
目錄 VI
表目錄 XVII
第一章 緒論 18
1-1 前言 18
1-2 電鍍銅配方簡介 19
1-2-1 電鍍液 20
1-2-2 加速劑 21
1-2-3 抑制劑 23
1-2-4 平整劑 24
1-3 感測器介紹 25
1-3-1 電化學感測器 27
1-3-1.1 電流式 27
1-3-1.2 電位式 28
1-3-1.3 電導式 29
1-4 感測有機添加劑之方法 31
1-4-1 循環伏安剝離法 (Cyclic Voltammetric Stripping, CVS) 31
1-4-2 哈氏法 ( Hull Cell ) 32
1-4-3 文獻回顧 34
1-5 研究動機 43
第二章 實驗原理 44
2-1 電化學理論分析 44
2-1-1 循環伏安法 44
2-1-2 線性掃描伏安法 46
2-1-3 微分脈衝伏安法 47
2-1-4 方波伏安法 49
第三章 實驗設備與方法 52
3-1 實驗藥品與材料 52
3-2 實驗儀器與設備 53
3-3 實驗步驟 54
3-3-1 電解液配置 54
3-3-2 電極前處理 54
3-3-2.1 白金電極 54
3-3-2.2 網印奈米金電極 54
3-3-3 有機添加劑含量標示 54
3-4 系統架設 55
3-4-1 液相感測系統 55
3-5 分析方法 56
3-5-1 電極之電化學分析 56
3-5-1.1 循環伏安法 56
3-5-1.2 線性掃描伏安法法 57
3-5-1.3 微分脈衝伏安法 58
3-5-1.4 方波伏安法 59
3-5-2 電極之特性分析 60
3-5-2-1 X射線繞射儀 (x-ray diffractometer, XRD) 60
3-5-2-2 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 60
3-5-2-3 歐傑電子能譜儀 (Auger Electron Spectroscopy, AES) 61
第四章 結果與討論 62
4-1 白金電極對有機添加劑之感測特性分析 62
4-1-1  無銅電解液下偵測低濃度有機添加劑與銅離子沉積與剝離 電位窗之循環伏安圖 62
4-1-2  含銅電解液下偵測低濃度有機添加劑之循環伏安圖 64
4-1-3  線性掃描伏安法感測有機添加劑 66
4-1-4 微分脈衝伏安法感測有機添加劑 68
4-1-5 方波伏安法感測有機添加劑 70
4-2 網印奈米金電極對有機添加劑之感測特性分析 72
4-2-1 表面型態與晶型結構 72
4-2-2 確認銅離子沉積與剝離之電位窗 74
4-2-3  偵測低濃度有機添加劑之循環伏安圖 76
4-2-4 線性掃描伏安法感測有機添加劑 78
4-2-5 微分脈衝伏安法感測有機添加劑 80
4-2-6 方波伏安法感測有機添加劑 82
4-2-6 三種感測模式靈敏度之比較 84
4-2-7 反應特性分析 88
4-2-7.1 循環伏安圖 88
4-2-7.2 氧化峰電流與掃描速率一次方線性關係 90
4-2-7.3  氧化峰電流與掃描速率二分之一次方線性關係 92
4-2-7.4 還原峰電流與掃描速率一次方線性關係 94
4-2-7.5 還原峰電流與掃描速率二分之一次方線性關係 96
4-2-8 改變背景溶液濃度之影響 99
4-2-8.1 改變HCl 濃度 99
4-2-8.2 改變CuSO4 濃度 100
4-2-9 電極耐用度分析 102
4-2-10 實驗前實驗後之特性分析 104
4-2-10.1 表面型態 104
4-2-10.2 化學狀態 105
4-3 綜合討論 107
第五章 結論 111
參考文獻 113


1.何謂PCB?
http://www.cheer-time.com.tw/index.php?view=custom1&d=30#Process_description
2.矽通孔TSV封裝
https://www.moneydj.com/KMDJ/Wiki/wikiViewer.aspx?keyid=7e9d34dd-3293-499d-b3fd-1f92935ccf51
3.雲天半導體玻璃通孔 (TGV) 技術助力5G騰飛
https://kknews.cc/tech/9vyaynj.html
4.W. -P. Dow, M. -Y. Yena, S. -Z. Liao. Y. -D. Chiu, H. -C. Huang, Fill-ing mechanism in microvia metallization by copper electroplating, Electrochimica Acta, 2008, 53 (28), 8228-8237.
5.Y. -D. Chiu, W. -P. Dow, S. -M. Huang, S. -L. Yau, Y. -L. Lee, Sensi-tivity Enhancement for Quantitative Electrochemical Determination of a Trace Amount of Accelerator in Copper Plating Solutions, Journal of The Electrochemical Society, 2011, 158 (5), 290-297.
6.每日頭條,電鍍銅工藝及配方技術開發。
https://kknews.cc/zh-tw/news/p9zgb4e.html
7.Z. Li, B. Tan, M. Shi, J. Luo, Z. Hao, J. He, G. Yang, C. Cui, Bis-(sodium sulfoethyl)-disulfide: A Promising Accelerator for Super-conformal Copper Electrodeposition with Wide Operating Concentra-tion Ranges, J. Electrochem. Soc., 2020, 167 (4), 042508.
8.P. -F. Chan, Y. -D. Chiu, W. -P. Dow, K. Krug, Y. -L. Lee, S. -L. Yau, Use of 3,3-Thiobis(1-propanesulfonate) to Accelerate Microvia Filling by Copper Electroplating, J. Electrochem. Soc., 2013, 160 (12), 3271-3277.
9.H. Lee, C. -M. Chen, Impurity Effects in Electroplated-Copper Solder Joints, Metals, 2018, 8(6), 388.
10.N. Xiao, N. Li, G. Cui, D. Tian, S. Yu, Q. Li, G. Wu, Triblock Copol-ymers as Suppressors for Microvia Filling via Copper Electroplating, J. Electrochem. Soc., 2013, 160 (4), 188-195.
11.L. Yang, A. Radisic, J. Deconinck, P. M. Vereeckena, Modeling the Bottom-Up Filling of Through-Silicon vias Through Suppressor Ad-sorption/Desorption Mechanism, J. Electrochem. Soc., 2013, 160 (12), 3051-3056.
12.J. Luo, Z. Li, M. Shi, J. Chen, Z. Hao, J. He, Effects of Accelerator Alkyl Chain Length on the Microvia Filling Performance in Copper Superconformal Electroplating, J. Electrochem. Soc., 2019, 166(4), 104-112.
13.W. -P. Dow, C. -C. Li, M. -W. Lin, G. -W. Su, C. -C. Huang, Copper Fill of Microvia Using a Thiol-Modified Cu Seed Layer and Various Levelers, J. Electrochem. Soc., 2009, 156 (8), D314-D320.
14.S. Ren, Z. Lei, Z. Wang, Investigation of Nitrogen Heterocyclic Com-pounds as Levelers for Electroplating Cu Filling by Electrochemical Method and Quantum Chemical Calculation, J. Electrochem. Soc., 2015, 162 (10), 509-514.
15.H. Ghadimi, S. A. Ghani, I. S. Amiri, Electrochemistry of Dihy-droxybenzene Compounds, Carbon Based Electrodes and Their Uses in Synthesis and Sensors, 2017, 1-30.
16.D. Jiménez, G. Díaz, M. C. López, M. J. Castañón, A. J. Ordieres, P. Blanco, Chapter 1 - Molecularly Imprinted Electrochemical Sensors: Past, Present, and Future, in Molecularly Imprinted Sensors. 2012, 1-34.
17.Y. -D. Chiu, W. -P. Dow, S. -M. Huang, S. -L. Yau, Y. -L. Lee, Sensi-tivity Enhancement for Quantitative Electrochemical Determination of a Trace Amount of Accelerator in Copper Plating Solutions, J. Elec-trochem. Soc., 2011, 158(5), 290-297.
18.銳馳科技有限公司,循環伏安剝離(CVS) 測試技術的原理和實現。http://www.acctronics.com/zh-tw/productID/tarticle_detail-270187.html
19.ECI TECHNOLOGY - Control of damascene copper processes by Cyclic Voltammetric Stripping.
https://www.ecitechnology.com/control-of-damascene-copper-processes-by-cyclic-voltammetric-stripping/
20.駿光化工實業有限公司,哈式槽試驗的特點及其應用。
http://www.giantguang.com.tw/prodDetail.asp?id=17
21.YAMAMOTO-MS - What is Hull Cell Test ?
https://yamamoto-ms.co.jp/en/what-is-hull-cell/
22.B. -G. Xie, J. -J. Sun, X. -B. Chen, J. -H. Chen, T. -L. Xiang, G. -N. Chen, In Situ Monitoring of Additives in Copper Plating Baths by Cyclic Voltammetric Stripping with a Microelectrode, J. Electrochem. Soc., 2007, 154(10), 516-519.
23.C. D. Ellis, M. C. Hamilton, J. R. Nakamura, B. M. Wilamowski, Effi-cient Determination of Copper Electroplating Chemistry Additives, IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4(8), 1380-1390.
24.S. Choe, M. Kim, K. Kim, H. Kim, Y. Jeon, T. Kim, S. Kim, J. Kim, High Accuracy Concentration Analysis of Accelerator Components in Acidic Cu Superfilling Bath, J. Electrochem. Soc., 2016, 163(2), 33-39.
25.Y. Yoon, Y. Ham, T. Kim, S. Choe, J. Kim, Cyclic Voltammetry Strip-ping Analysis to Determine Iodide Ion Concentration in Cu Plating Bath, J. Electrochem. Soc., 2018, 165(5), 213-218.
26.Y. Yoon, H. Kim, T. Kim, K. Lee, S. Choe, J. Kim, Selective determi-nation of PEG-PPG concentration in Cu plating bath with cyclic volt-ammetry stripping using iodide ion, Electrochimica Acta, 2020, 339, 135916.
27.A. Frank, A. J. Bard, The Decomposition of the Sulfonate Additive Sulfopropyl Sulfonate in Acid Copper Electroplating Chemistries, J. Electrochem. Soc., 2003, 150(4), 244-250.
28.K. Hong, A New Metrology System of Organic Additives in Copper Electroplating Baths, Journal of the Korean Physical Society, 2003, 43(2), 286-289.
29.L. D'Urzo, H. Wang, A. Pa, C. Zhi, SPE-HPLC Detection of Organic Additives in Acidic Copper Plating Baths : I. Sulfopropyl Disulfide-Based Brighteners, J. Electrochem. Soc., 2005, 152(4), 243-247.
30.R. Palmans, S. Claes, L. E. Vanatta, D. E. Coleman, Ion-pair chroma-tography of bis (sodium-sulfopropyl) disulfide brightener in acidic copper plating baths, Journal of Chromatography A, 2005, 1085(1), 147-154.
31.Ossila, Cyclic Voltammetry: The Basics Explained, Enabling materials science.
https://www.ossila.com/pages/cyclic-voltammetry
32.Wikipedia -線性掃描伏安法
https://en.wikipedia.org/wiki/Linear_sweep_voltammetry
33.K. Scott, Electrochemical principles and characterization of bioelec-trochemical systems, Microbial Electrochemical and Fuel Cells, 2016, 29-66.
34.禪普科技,電化學分析方法。
http://www.zensor.com.tw/assets/download/Zensor%20R&D%20Technology-1.2%20Electrochemical%20Method-%E4%B8%AD%E6%96%87.pdf
35.Princeton Applied Research - Square Wave Voltammetry.
https://www.ameteksi.com/-/media/ameteksi/download_links/documentations/library/princetonappliedresearch/application_note_s-7.pdf?la=en
36.B. L. Dutrow, C. M. Clark, X-ray Powder Diffraction (XRD), Geo-chemical Instrumentation and Analysis.
https://serc.carleton.edu/research_education/geochemsheets/techniques/XRD.html
37.Savile Bradbury, Scanning electron microscope.
https://www.britannica.com/contributor/Savile-Bradbury/347
38.Integrated Service Technology, 歐傑電子能譜儀 (AES) 。
https://www.istgroup.com/tw/service/aes/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔