跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/28 05:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王信仁
研究生(外文):WANG, HSIN-JEN
論文名稱:利用掃描式電化學顯微鏡篩選催化氧氣 還原反應之三元鉑合金觸媒
論文名稱(外文):Screening ternary Pt-based catalysts for oxygen reduction reaction by scanning electrochemical microscopy
指導教授:翁于晴翁于晴引用關係
指導教授(外文):WENG, YU-CHING
口試委員:周澤川杜景順翁于晴
口試委員(外文):CHOU, TSE-CHUANDO, JING-SHANWENG, YU-CHING
口試日期:2020-07-21
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:130
中文關鍵詞:氧氣還原反應掃描式電子顯微鏡
外文關鍵詞:Oxygen Reduction reactionPtScanning electrochemical microscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:68
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
誌  謝 i
摘  要 ii
Abstract iii
目  錄 iv
圖目錄 vii
表目錄 xv
第一章 緒論 1
1-1 氧氣的介紹 1
1-2 氧氣還原觸媒發展現況 3
1-2-1 氧氣還原觸媒應用 3
1-2-2 氧氣還原觸媒選擇 5
1-3 掃描式電化學顯微鏡(SECM)介紹 7
1-3-1 SECM在氧氣還原觸媒方面之應用 8
1-3-2 SECM篩選氧氣還原觸媒文獻回顧 9
1-4 研究動機 11
第二章 原理介紹 12
2-1 氧氣還原途徑與機制 12
2-2 掃描式電化學顯微鏡理論 14
2-2-1 回饋模式 14
2-2-2 微電極產生-基材收集模式 16
2-2-3 逼近曲線動力學 17
2-2-4 微電極/基材雙循環伏安法 20
2-3 旋轉電極理論 21
2-4 亨利定律 24
第三章 實驗設備與方法 25
3-1 藥品與材料 25
3-2 儀器與設備 28
3-3 實驗方法 30
3-3-1 微電極的製作與前處理 30
3-3-2 三元觸媒陣列製備 31
3-3-3 氧氣還原最佳比例觸媒之製備 34
3-4 分析方法 35
3-4-1 觸媒表面特性分析 36
3-4-2 微電極產生-基材收集模式之分析 37
3-4-3 雙循環伏安法分析 39
3-4-4 逼近曲線分析 40
3-4-5 旋轉電極分析 42
第四章 實驗結果與討論 44
4-1 三元陣列催化氧氣還原之篩選與特性分析 44
4-1-1 在硫酸水溶液中之觸媒篩選 44
4-1-2 在過氯酸水溶液中之觸媒篩選 56
4-1-3三元鉑合金觸媒與鉑觸媒之比較 68
4-1-4 能量分散式光譜儀(EDS)分析 70
4-1-5 觸媒元素表面型態分析 73
4-2 最優化觸媒表面特性分析 85
4-2-1 最優化觸媒之能量分散式光譜儀(EDS)分析 85
4-2-2 最優化觸媒之高解析X光繞射儀(XRD)分析 86
4-2-3 最優化觸媒之雙循環伏安法分析 89
4-2-4 最優化觸媒之逼近曲線動力學分析 94
4-2-5 最優化觸媒之旋轉電極動力學分析 109
4-3 綜合討論 122
第五章 結論 125
參考文獻 127


1.Wikipedia, Oxygen. 2020.
2.Polcari, D., Dauphin-Ducharme, P., and Mauzeroll, J. (2016). Scanning Electrochemical Microscopy: A Comprehensive Review of Experimental Parameters from 1989 to 2015, Chemical Reviews, 116 (22), 13234–13278.
3.Wang, F., Zhang Q., Rui Z., Li J., and Liu, J. (2020). High-Loading Pt–Co/C Catalyst with Enhanced Durability toward the Oxygen Reduction Reaction through Surface Au Modification, American Chemical Society Appl. Mater. 12 (27), 30381–30389.
4.Goenaga, G. A., Roy, A. L., Cantillo, N. M., Foister, S., Zawodzinski, T. A. Jr. (2018). A family of platinum group metal-free catalysts for oxygen reduction in alkaline media, Journal of Power Sources, 395, 148-157.
5.Wang, Q., Xue, Y., Sun, S., Yan, S., Miao, H., Liu, Z. (2019). Facile synthesis of ternary spinel Co–Mn–Ni nanorods as efficient bi-functional oxygen catalysts for rechargeable zinc-air batteries, Journal of Power Sources. 435, 226761.
6.Shui, J., Wang, M., Du, F., and Dai, L. (2015). N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells, Science Advances, 1 (1), 1400129.
7.Kulkarni, A., Siahrostami, S., Patel, A., Nørskov, J. K. (2018). Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction, Chemical Reviews, 118 (5), 2302-2312.
8.Kolagatla, S., Subramanian, P., Schechter, A. (2019). Catalytic current mapping of oxygen reduction on isolated Pt particles by atomic force microscopy-scanning electrochemical microscopy, Applied Catalysis B: Environmental, 256(5), 117843.
9.Escudero-Escribano, M., Malacrida, P., Hansen, M. H., Vej-Hansen, U. G., Velázquez-Palenzuela, A., Tripkovic, V., Schiøtz, J., Rossmeisl, J., Stephens, I. E. L., Chorkendorff, I. (2016). Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction, Science, 352 (6281), 73-76.
10.Liu, B., and Bard, A. J. (2002). Scanning Electrochemical Microscopy. 45. Study of the Kinetics of Oxygen Reduction on Platinum with Potential Programming of the Tip, The Journal of Physical Chemistry B, 106 (49), 12801-12806.
11.Cho, Y. B., Lee, C., Lee, Y. (2015). Study of Porosity-Dependent Oxygen Reduction at Porous Platinum Tips Using Scanning Electrochemical Microscopy, Journal of The Electrochemical Society, 162 (10), H792.
12.Zhang, Y., Wu, X., Fu, Y., Shen, W., Zeng, X., Ding, W. (2014). Carbon aerogel supported Pt–Zn catalyst and its oxygen reduction catalytic performance in magnesium-air batteries, Journal of Materials Research, 29 (23), 2263-2870.
13.Wain, A. J. (2013). Imaging size effects on the electrocatalytic activity of gold nanoparticles using scanning electrochemical microscopy, Electrochimica Acta, 92 (1), 383-391.
14.Nagaiah, T. C., Maljusch, A., Chen, X., Bron, M., Schuhmann, W. (2009). Visualization of the Local Catalytic Activity of Electrodeposited Pt–Ag Catalysts for Oxygen Reduction by means of SECM, ChemPhysChem, 10 (15), 2711-2718.
15.Li, W., Fan, F. R. F., Bard, A. J. (2012). The application of scanning electrochemical microscopy to the discovery of Pd–W electrocatalysts for the oxygen reduction reaction that demonstrate high activity, stability, and methanol tolerance, Journal of Solid State Electrochemistry, 16, 2563-2568.
16.Hansen, Heine A., Viswanathan, Venkatasubramanian, Nørskov, Jens K. (2014). Unifying Kinetic and Thermodynamic Analysis of 2 e– and 4 e– Reduction of Oxygen on Metal Surfaces. The Journal of Physical Chemistry C, 118(13).
17.Bae, J. H., Yu, Y., Mirkin, M. V. (2016). Scanning Electrochemical Microscopy Study of Electron-Transfer Kinetics and Catalysis at Nanoporous Electrodes, The Journal of Physical Chemistry C, 120 (37), 20651-20658.
18.Comstock, D. J., Elam, J. W., Pellin, M. J., Hersam, M. C. (2010). Integrated Ultramicroelectrode−Nanopipet Probe for Concurrent Scanning Electrochemical Microscopy and Scanning Ion Conductance Microscopy, Analytical Chemistry, 82 (4), 1270-1276.
19.Daniele, S., Baldo, M. A., Bragato, C., Abdelsalam, M. E., Denuault, G. (2002). Steady-State Voltammetry of Hydroxide Ion Oxidation in Aqueous Solutions Containing Ammonia, Analytical Chemistry, 74 (14), 3290-3296.
20.Nie, Y., Li, L., Wei, Z. (2015). Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction, Chemical Society Reviews, 44, 2168-2201.
21.Kim, J. S., Lee, B. J. (2020). Durability screening of Pt ternary alloy (111) surfaces for oxygen reduction reaction using Density Functional Theory, Surfaces and Interfaces, 18, 100440.
22.Mani, P., Srivastava, R., Strasser P. (2011). Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells, Journal of Power Sources, 196 (2), 666-673.
23.Yin, J., Wang, L., Yu, P., Zhao, L., Tian, C., Jiang, B., Zhao, D., Zhou, W., Fu, H. (2015). A Platinum–Vanadium Nitride/Porous Graphitic Nanocarbon Composite as an Excellent Catalyst for the Oxygen Reduction Reaction, ChemElectroChem, 2 (11), 1813-1820.
24.Nørskov, J. K., Rossmeisl J., Logadottir A., Lindqvist L., Kitchin J. R., Bligaard T., Jónsson H. (2004). Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, The Journal of Physical Chemistry B, 108 (46), 17886-17892.
25.Yeager, E. (1986). Dioxygen electrocatalysis: mechanisms in relation to catalyst structure, Journal of Molecular Catalysis, 38(1-2), 5-25.
26.Stamenkovic, V. R., Fowler, B., Mun, B. S., Wang, G., Ross, P. N., Lucas, C. A., Marković, N. M. (2007). Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability, Science, 315 (5811), 493-497.
27.Schupperta, A. K., Savan, A., Ludwig, A., Mayrhofer, K. J.J. (2014). Potential-resolved dissolution of Pt-Cu: A thin-film material library study, Electrochimica Acta, 144, 332-340.
28.Park, S. H., Choi, C. H., Koh, J. K., Pak, C., Jin, S., Woo, S. I. (2013). Combinatorial High-Throughput Screening for Highly Active Pd–Ir–Ce Based Ternary Catalysts in Electrochemical Oxygen Reduction Reaction, ACS Combinatorial Science, 15 (11), 572-579.
29.Jeon, M. K., Lee, C. H., Park, G. I., Kang, K. H. (2012). Combinatorial search for oxygen reduction reaction electrocatalysts: A review, Journal of Power Sources, 216, 400-408.
30.Bard, A. J., Faulkner, L. R. (2001). ELECTROCHEMICAL METHODS Fundamentals and Applications. New York: John Wiley & Sons, Inc. Books.
31.Bard, A. J., Mirkin, M. V. (2001). Scanning Electrochemical Microscopy. New York: Marcel Dekker, Inc. Books.
32.Cornut, R., Lefrou, C. (2008). New analytical approximation of feedback approach curves with a microdisk SECM tip and irreversible kinetic reaction at the substrate, Journal of Electroanalytical Chemistry, 621(2), 178-184.
33.Nikolic, J., Expósito, E., Iniesta, J., González-Garcia, J., Montiel, V. (2000). Theoretical Concepts and Applications of a Rotating Disk Electrode, Journal of Chemical Education, 77(9), 1191.
34.Bonakdarpour, A., Delacote, C., Yang, R., Wieckowski, A., Dahn, J. R. (2008). Loading of Se/Ru/C electrocatalyst on a rotating ring-disk electrode and the loading impact on a H2O2 release during oxygen reduction reaction, Electrochemistry Communications, 10(4), 611-615.

電子全文 電子全文(全文開放日期20250901,本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊