|
1.Wikipedia, Oxygen. 2020. 2.Polcari, D., Dauphin-Ducharme, P., and Mauzeroll, J. (2016). Scanning Electrochemical Microscopy: A Comprehensive Review of Experimental Parameters from 1989 to 2015, Chemical Reviews, 116 (22), 13234–13278. 3.Wang, F., Zhang Q., Rui Z., Li J., and Liu, J. (2020). High-Loading Pt–Co/C Catalyst with Enhanced Durability toward the Oxygen Reduction Reaction through Surface Au Modification, American Chemical Society Appl. Mater. 12 (27), 30381–30389. 4.Goenaga, G. A., Roy, A. L., Cantillo, N. M., Foister, S., Zawodzinski, T. A. Jr. (2018). A family of platinum group metal-free catalysts for oxygen reduction in alkaline media, Journal of Power Sources, 395, 148-157. 5.Wang, Q., Xue, Y., Sun, S., Yan, S., Miao, H., Liu, Z. (2019). Facile synthesis of ternary spinel Co–Mn–Ni nanorods as efficient bi-functional oxygen catalysts for rechargeable zinc-air batteries, Journal of Power Sources. 435, 226761. 6.Shui, J., Wang, M., Du, F., and Dai, L. (2015). N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells, Science Advances, 1 (1), 1400129. 7.Kulkarni, A., Siahrostami, S., Patel, A., Nørskov, J. K. (2018). Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction, Chemical Reviews, 118 (5), 2302-2312. 8.Kolagatla, S., Subramanian, P., Schechter, A. (2019). Catalytic current mapping of oxygen reduction on isolated Pt particles by atomic force microscopy-scanning electrochemical microscopy, Applied Catalysis B: Environmental, 256(5), 117843. 9.Escudero-Escribano, M., Malacrida, P., Hansen, M. H., Vej-Hansen, U. G., Velázquez-Palenzuela, A., Tripkovic, V., Schiøtz, J., Rossmeisl, J., Stephens, I. E. L., Chorkendorff, I. (2016). Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction, Science, 352 (6281), 73-76. 10.Liu, B., and Bard, A. J. (2002). Scanning Electrochemical Microscopy. 45. Study of the Kinetics of Oxygen Reduction on Platinum with Potential Programming of the Tip, The Journal of Physical Chemistry B, 106 (49), 12801-12806. 11.Cho, Y. B., Lee, C., Lee, Y. (2015). Study of Porosity-Dependent Oxygen Reduction at Porous Platinum Tips Using Scanning Electrochemical Microscopy, Journal of The Electrochemical Society, 162 (10), H792. 12.Zhang, Y., Wu, X., Fu, Y., Shen, W., Zeng, X., Ding, W. (2014). Carbon aerogel supported Pt–Zn catalyst and its oxygen reduction catalytic performance in magnesium-air batteries, Journal of Materials Research, 29 (23), 2263-2870. 13.Wain, A. J. (2013). Imaging size effects on the electrocatalytic activity of gold nanoparticles using scanning electrochemical microscopy, Electrochimica Acta, 92 (1), 383-391. 14.Nagaiah, T. C., Maljusch, A., Chen, X., Bron, M., Schuhmann, W. (2009). Visualization of the Local Catalytic Activity of Electrodeposited Pt–Ag Catalysts for Oxygen Reduction by means of SECM, ChemPhysChem, 10 (15), 2711-2718. 15.Li, W., Fan, F. R. F., Bard, A. J. (2012). The application of scanning electrochemical microscopy to the discovery of Pd–W electrocatalysts for the oxygen reduction reaction that demonstrate high activity, stability, and methanol tolerance, Journal of Solid State Electrochemistry, 16, 2563-2568. 16.Hansen, Heine A., Viswanathan, Venkatasubramanian, Nørskov, Jens K. (2014). Unifying Kinetic and Thermodynamic Analysis of 2 e– and 4 e– Reduction of Oxygen on Metal Surfaces. The Journal of Physical Chemistry C, 118(13). 17.Bae, J. H., Yu, Y., Mirkin, M. V. (2016). Scanning Electrochemical Microscopy Study of Electron-Transfer Kinetics and Catalysis at Nanoporous Electrodes, The Journal of Physical Chemistry C, 120 (37), 20651-20658. 18.Comstock, D. J., Elam, J. W., Pellin, M. J., Hersam, M. C. (2010). Integrated Ultramicroelectrode−Nanopipet Probe for Concurrent Scanning Electrochemical Microscopy and Scanning Ion Conductance Microscopy, Analytical Chemistry, 82 (4), 1270-1276. 19.Daniele, S., Baldo, M. A., Bragato, C., Abdelsalam, M. E., Denuault, G. (2002). Steady-State Voltammetry of Hydroxide Ion Oxidation in Aqueous Solutions Containing Ammonia, Analytical Chemistry, 74 (14), 3290-3296. 20.Nie, Y., Li, L., Wei, Z. (2015). Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction, Chemical Society Reviews, 44, 2168-2201. 21.Kim, J. S., Lee, B. J. (2020). Durability screening of Pt ternary alloy (111) surfaces for oxygen reduction reaction using Density Functional Theory, Surfaces and Interfaces, 18, 100440. 22.Mani, P., Srivastava, R., Strasser P. (2011). Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells, Journal of Power Sources, 196 (2), 666-673. 23.Yin, J., Wang, L., Yu, P., Zhao, L., Tian, C., Jiang, B., Zhao, D., Zhou, W., Fu, H. (2015). A Platinum–Vanadium Nitride/Porous Graphitic Nanocarbon Composite as an Excellent Catalyst for the Oxygen Reduction Reaction, ChemElectroChem, 2 (11), 1813-1820. 24.Nørskov, J. K., Rossmeisl J., Logadottir A., Lindqvist L., Kitchin J. R., Bligaard T., Jónsson H. (2004). Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, The Journal of Physical Chemistry B, 108 (46), 17886-17892. 25.Yeager, E. (1986). Dioxygen electrocatalysis: mechanisms in relation to catalyst structure, Journal of Molecular Catalysis, 38(1-2), 5-25. 26.Stamenkovic, V. R., Fowler, B., Mun, B. S., Wang, G., Ross, P. N., Lucas, C. A., Marković, N. M. (2007). Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability, Science, 315 (5811), 493-497. 27.Schupperta, A. K., Savan, A., Ludwig, A., Mayrhofer, K. J.J. (2014). Potential-resolved dissolution of Pt-Cu: A thin-film material library study, Electrochimica Acta, 144, 332-340. 28.Park, S. H., Choi, C. H., Koh, J. K., Pak, C., Jin, S., Woo, S. I. (2013). Combinatorial High-Throughput Screening for Highly Active Pd–Ir–Ce Based Ternary Catalysts in Electrochemical Oxygen Reduction Reaction, ACS Combinatorial Science, 15 (11), 572-579. 29.Jeon, M. K., Lee, C. H., Park, G. I., Kang, K. H. (2012). Combinatorial search for oxygen reduction reaction electrocatalysts: A review, Journal of Power Sources, 216, 400-408. 30.Bard, A. J., Faulkner, L. R. (2001). ELECTROCHEMICAL METHODS Fundamentals and Applications. New York: John Wiley & Sons, Inc. Books. 31.Bard, A. J., Mirkin, M. V. (2001). Scanning Electrochemical Microscopy. New York: Marcel Dekker, Inc. Books. 32.Cornut, R., Lefrou, C. (2008). New analytical approximation of feedback approach curves with a microdisk SECM tip and irreversible kinetic reaction at the substrate, Journal of Electroanalytical Chemistry, 621(2), 178-184. 33.Nikolic, J., Expósito, E., Iniesta, J., González-Garcia, J., Montiel, V. (2000). Theoretical Concepts and Applications of a Rotating Disk Electrode, Journal of Chemical Education, 77(9), 1191. 34.Bonakdarpour, A., Delacote, C., Yang, R., Wieckowski, A., Dahn, J. R. (2008). Loading of Se/Ru/C electrocatalyst on a rotating ring-disk electrode and the loading impact on a H2O2 release during oxygen reduction reaction, Electrochemistry Communications, 10(4), 611-615.
|