(44.192.112.123) 您好!臺灣時間:2021/03/09 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:施富祺
論文名稱:電磁致動之微機械熱電偶應用於微米級的熱點檢測
論文名稱(外文):An Electromagnetically Actuated Micromachined Thermocouple for the Detection of Microscale Hot Spot
指導教授:鄒慶福
口試委員:張興政賴騰憲
口試日期:2020-07-10
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:64
中文關鍵詞:微機電系統電鑄鎳n-type poly-Si熱電偶微探針微米級熱點檢測西貝克
外文關鍵詞:MEMSelectroplated Nin-type poly-Sithermocouplemicroprobedetection of microscale hot spotSeebeck
相關次數:
  • 被引用被引用:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
元件檢測技術對於微機電系統之產品扮演著非常重要的角色,然而目前典型的探針設計大部分僅針對元件的電性進行檢測。為此,本研究提出一個以電鑄鎳為主結構層,並搭配n-type poly-Si等薄膜堆疊形成的熱電偶之半主動式懸臂樑微探針結構,其相較於典型的被動式探針,另外還增加了一外部磁力來驅動,目標將應用於元件局部的微米級熱點檢測及其電性驅動之功能整合式晶片。此外也透過COMSOL分別針對懸臂樑的力學與熱傳導進行分析與模擬,以了解不同長度之懸臂樑的機械結構強度,以及熱傳導速率隨時間變化的響應特性。實驗部分係使用紅外線熱像儀來觀測一根針頭尺寸為15 μm的鎢探針之加熱情形,並利用該針頭當作一微小熱點來接觸於微探頭尺寸同為15 μm的熱電偶微探針,其中懸臂樑結構的長度、寬度與厚度分別為70 μm、30 μm和5.5 μm。根據實驗結果顯示,在室溫環境下,一個溫度為108 ℃的針頭碰觸於熱電偶微探針時,其輸出的西貝克電壓變化量高達7.84 mV,藉此可以計算得知本研究製作的金屬–半導體之熱電偶對溫度之電壓輸出靈敏度為94 μV/℃。
The measurement technique of the MEMS products plays an important role for the elements, but most of the conventional probe design is only for the electrical testing. For this, the proposed design is a semi-active cantilever probe which includes electroplated Ni as the major structure layer, and n-type poly-Si for making the thermocouple thermal sensor. Compared to typical passive probe, the cantilever microprobe will be applied in the regional element detection of microscale hot spot, electrical driving, and an external magnetic force for holding the Ni cantilever. Otherwise, the mechanical and thermal characteristics are analyzed and simulated for understanding the structural strength, and the response characteristics of heat conduction with different length of the cantilever by COMSOL. Using infrared camera to observe the heating of a tungsten probe with a 15 μm probe tip, and used it to contact a thermocouple probe with same size of 15 μm. The length, width and thickness of the cantilever are 70 μm, 30 μm and 5.5 μm, respectively. According to the experimental result, when the 108 ℃ tungsten probe tip is contacted with the thermocouple probe, the variation of the Seebeck voltage is 7.84 mV, as can be seen that the temperature sensitivity of the metal-semiconductor thermocouple output voltage is 94 μV/℃.
誌  謝 i
摘  要 ii
Abstract iii
目  錄 iv
圖 目 錄 vi
表 目 錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 文獻回顧 4
1.3.1 微機械探針 4
1.3.2 熱感測器 8
第二章 模組化設計與分析 12
2.1 設計概念 12
2.2 理論介紹 14
2.3 模擬分析 16
2.3.1 懸臂樑力學分析與模擬 16
2.3.2 熱傳導分析與模擬 18
第三章 元件製程與製作規劃 22
3.1 元件幾何尺寸設計 22
3.2 光罩設計 23
3.3 模組製程規劃 26
3.4 製程流程 29
3.4.1 基板選用與SiO2熱氧化層成長 29
3.4.2 Poly-Si薄膜沉積與第一道微影製程 29
3.4.3 Poly-Si乾蝕刻製程 33
3.4.4 PECVD SiO2薄膜沉積、定義與蝕刻與光阻去除 37
3.4.5 電鑄種子層蒸鍍與電鑄鎳 41
3.4.6 背面曝光與ICP蝕刻 52
第四章 實驗量測與分析 57
第五章 結論 61
參考文獻 62

[1]http://www.yole.fr/
[2]B. H. Kim, H. C. Kim, K. Chun, J. Ki, and Y. Tak, “Cantilever-type microelectromechanical systems probe card with through-wafer interconnects for fine pitch and high-speed testing,” Japanese journal of applied physics, Vol. 43, No. 6B, pp. 3877-3881, 2004.
[3]Y. D. Kim, J. H. Sim, J. W. Nam, and J. H. Lee, “Fabrication of a silicon micro-probe for vertical probe card application,” Japanese journal of applied physics, Vol. 37, No. 12B, pp. 7070-7073, 1998.
[4]X. Jing, D. Chen, C. Huang, X. Chen, J. Miao, J. Liu, and J. Zhu, “Elastic MEMS probe card based on the PDMS substrate,” Journal of micromechanics and microengineering, Vol. 20, No. 5, 055038(7pp), 2010.
[5]K. Kataoka, T. Itoh, T. Suga, and K. Inoue, “Contact properties of Ni micro-springs for MEMS probe card,” International conference on electrical contacts electrical contacts, Seattle, USA, 23-23 Sept. 2004, pp. 231-235.
[6]F. F. Farkhani, and F. A. Mohammadi, “Temperature and power measurement of modern dual core processor by infrared thermography,” International symposium on circuits and systems, Paris, France, 30 May-2 June, 2010, pp. 1603-1606.
[7]L. Cui, W. Jeong, V. F. Hurtado, J. Feist, F. J. G. Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, “Study of radiative heat transfer in Ångström- and nanometre-sized gaps,” Nature communications, Vol. 8, 14479(8pp), 2017.
[8]Y. Zhang, Y. Zhang, and R. Marcus, “Thermal actuated microprobes for a new wafer probe card," Journal of MEMS, Vol. 8, pp.43-49, 1999.
[9]F. Wang, X. Lin, R. Cheng, K. Jiang, and S. Feng, “Silicon cantilever arrays with by-pass metal through-silicon-via (TSV) tips for micromachined IC testing probe cards,” Microelectronic engineering, Vol. 86, No. 11, pp. 2211-2216, 2009.
[10]F. Wang, X. Li, and S. Feng, “Microcantilever probe cards with silicon and nickel composite micromachining technique for wafer-level burn-in testing,” IEEE transactions on advanced packaging, Vol. 32, No. 2, pp. 469-477, 2009.
[11]T. Yuan, D. Chen, J. Chen, H. Fu, S. Kurth, T. Otto, and T. Gessner, “Design, fabrication and characterization of MEMS probe card for fine pitch IC testing,” Sensors and actuators A: Physical, Vol. 204, pp. 67-73, 2013.
[12]J. Marzouk, S. Arscott, A. E. Fellahi, K. Haddadi, T. Lasri, C. Boyaval, and G. Dambrine, “MEMS probes for on-wafer RF microwave characterization of future microelectronics: design, fabrication and characterization,” Journal of micromechanics and microengineering, Vol. 25, 075024(11pp), 2015.
[13]P. K. Jo, M. Zia, J. L. Gonzalez, H. Oh, and M. S. Bakir, “Design, fabrication, and characterization of dense compressible microinterconnects,” IEEE transactions on components, packaging and manufacturing technology, Vol. 7, No. 7, pp. 1003-1010, 2017.
[14]K. Kim, C. Cho and B. Kim, “Probe array from BeCu metal sheet using 25 heat and fusing currents,” International journal of engineering and technology, Vol. 7, No. 3.7, pp. 182-186, 2018.
[15]https://www.amazon.com.
[16]http://w.chinabaike.com.
[17]https://www.sweetmarias.com.
[18]P. H. Kao, P. J. Shih, C. L. Dai, and M. C. Liu, “Fabrication and characterization of CMOS-MEMS thermoelectric micro generators,” Sensors, Vol. 10, No. 2, pp. 1315-1325, 2010.
[19]H. Zhou, P. Kropelnicki, J. M. Tsai, and C. Lee, “Development of a thermopile infrared sensor using stacked double polycrystalline silicon layers based on the CMOS process,” Journal of micromechanics and microengineering, Vol. 23, 065026(14pp), 2013.
[20]Z. Zhang and X. Liao, “Characteristics of doped n+ GaAs thermopile based RF MEMS power sensors for MMIC applications,” IEEE electron device letters, Vol. 38, No. 10, pp. 1473-1476, 2017.
[21]Z. Zhang and M. Kimura, M. Toda, and T. Ono, “Silicon-based micro calorimeter with single thermocouple structure for thermal characterization,” IEEE electron device letters, Vol. 40, No. 7, pp. 1198-1200, 2019.
[22]許佩佩、鄒國益(民103)。材料力學。台灣:全華圖書。
[23]T. Huesgen, P. Woias, and N. Kockmann, “Design and fabrication of MEMS thermoelectric generators with high temperature efficiency,” Sensors and actuators A: Physical, Vol. 145-146, pp. 423-429, 2008.
[24]E. Mazza, S.Abel, and J. Dual, “Experimental determination of mechanical properties of Ni and Ni-Fe microbars,” Microsystem technologies, Vol. 2, pp. 197-202, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔