跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 13:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡梓崧
研究生(外文):HU, ZIH-SONG
論文名稱:具有電鍍錫凸塊之懸臂樑應用於Micro LED陣列之覆晶接合
論文名稱(外文):The Application of Cantilever with Electroplated Solder Bump for Flip Chip Bonding of Micro LED Arrays
指導教授:鄒慶福
口試委員:張興政賴騰憲
口試日期:2020-07-10
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:88
中文關鍵詞:微機電技術覆晶型Micro LED懸臂樑陣列電鍍錫凸塊
外文關鍵詞:MEMSFlip chip Micro LEDCantilever arrayElectroplated solder bump
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來Micro LED為各大面板廠爭相研究的顯示技術,其中巨量轉移技術發展仍是面臨挑戰,另一方面,直接在磊晶基板上製作出的陣列式Micro LED顯示器,由於粒晶尺寸縮小以及正負電極之間的高低差,因此顯示器的封裝良率以及電性連接仍是陣列型Micro LED封裝的重要課題。有鑑於此,本研究提出具有電鍍錫凸塊之懸臂樑應用於Micro LED陣列之覆晶接合,透過微機電製程技術製作出具有金屬凸塊之微懸臂樑陣列結構,以補償覆晶型Micro LED電極的高低差所導致封裝的不均勻性,其中利用懸臂樑的可撓曲的變形特性,可有效的改善電極接合的良率以及可靠性,同時藉由製程技術在懸臂樑尖端製作出錫凸塊之金屬電極,以匹配覆晶型Micro LED陣列電極進行覆晶接合。其顯示表明懸臂樑結構在0.8 μm固定位移情況下,可提供錫凸塊電極約500 μN之接觸力,且在回熔加熱過程,其電鍍錫凸塊可成功回熔,後續再透過晶片級覆晶接合技術,在特定的溫度及壓力下,便可以完成覆晶型Micro LED陣列顯示器之電性連結及控制。
In recent years, Micro LED is a display technology that is being researched by major panel manufacturers. The development of massive transfer technology is still facing challenges. Therefore, an array-type Micro LED display has been developed directly on an epitaxial substrate. However, due to the reduction of the LED size and the height difference between the positive and negative electrodes, the package yield and electrical connection of the display are still important issues in the Micro LED package. In view of this, this study proposes the application of cantilever with electroplated solder bump for flip chip bonding of Micro LED arrays. A micro cantilever array structure with metal bumps is fabricated through microelectromechanical technology to compensate for the unevenness caused by the height difference of the flip chip Micro LED electrodes. By utilizing the deformability characteristics of the cantilever beam, the electrode bonding yield and reliability can be effectively improved. At the same time, metal electrodes with electroplated solder bump are fabricated at the tip of the cantilever by micro fabrication techniques to match flip chip Micro LED electrodes for flip chip bonding. The results show that the cantilever beam structure can provide a contact force of about 500 μN for the tin bump electrode at a fixed displacement of 0.8 μm, and during the reflow heating process, the electroplated tin bump can be successfully reflowed. Subsequent through the wafer level flip chip bonding technology, the electrical connection and control of the wafer level Micro LED array display can be completed under specific temperature and pressure.
誌  謝 i
摘  要 ii
Abstract iii
目  錄 iv
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 3
1-3 文獻回顧 5
1-3-1 懸臂樑設計 5
1-3-2 覆晶構裝技術 9
2-1 設計概念 16
2-2 理論分析 20
2-3 元件模擬 21
第三章 製程規劃與製作 23
3-1 光罩設計 23
3-2 製程規劃 27
3-3 製程參數萃取 29
3-4 元件製作 31
3-4-1 底層導線定義及製作 32
3-4-2 絕緣層沉積 36
3-4-3 電性連結之孔洞定義與蝕刻 37
3-4-4 懸臂樑與上層導線定義及電鑄 42
3-4-5 UBM電極及回焊金屬電鑄 46
3-4-6 金屬保護層 49
3-4-7 種子層蝕刻 50
3-4-8 懸臂樑周圍絕緣層蝕刻 52
3-4-9 懸臂樑釋放蝕刻 54
第四章 實驗結果與討論 60
4-1 機械特性量測 60
4-2 錫凸塊回熔實驗 63
第五章 結論 71
5-1結論 71
5-2未來工作 71
參考文獻 73


[1]http://www.yole.fr/MicroLEDDisplays_Market.aspx#.XX78vSgzaUm
[2]http://www.yole.fr/2014-galery-MEMS.aspx#I0002f7f8
[3]B. H Kim, H. C. Kim, K. Chun, J. Ki and Y. Tak, “Cantilever-Type Microelectromechanical Systems Probe Card with Through-Wafer Interconnects for Fine Pitch and High-Speed Testing,” Japanese Journal of Applied Physics, Vol. 43, No. 6B, pp. 3877-3881, 2004.
[4]S. H. Lee and B. C. Kim, “Curled micro-cantilevers using benzocyclobutene polymer and Mo for wafer level probing,” Sensors and Actuators A: Physical, Vol. 121, No. 2, pp. 472-479, 2005.
[5]F. Wang, X. Li, R. Cheng, K. Jiang, and S. Feng, “Silicon cantilever arrays with by-pass metal through-silicon-via (TSV) tips for micromachined IC testing probe cards,” Microelectronic Engineering, Vol. 86, pp. 2211-2216, 2009.
[6]B. H. Kima, B. J. Parkb, J. BokKim, “Process effects of double step DRIE and Ni–Co electroplating for a trench-type cantilever probe for a fine-pitched MEMS probe card,” Sensors and Actuators A: Physical, Vol. 152, No. 2, pp. 252-260, 2009.
[7]F. Wang, X. Li, and S. Feng, “Microcantilever Probe Cards With Silicon and Nickel Composite Micromachining Technique for Wafer-Level Burn-In Testing,” IEEE Transactions on Advanced Packaging, Vol. 32, No. 2, pp.468-477, 2009.
[8]C. Tsou, T. Lai and C. Huang, "A Novel Micromachined Claw Probe for the Electrical Testing of Microsolder," Journal of Microelectromechanical Systems, Vol. 21, No. 5, pp.1022-1031, 2012.
[9]John H. Lau, “Recent advances and new trends in flip chip technology,” Journal of Electronic Packaging, Vol. 138, Issue. 3, pp. 030802 1-23, 2016.
[10]Q. Zhu, L. Ma, S. K. Sitaraman, “Development of G-helix structure as off-chip interconnect,” Journal of Electronic Packaging, Vol. 126, No. 2, pp.237-246, 2004.
[11]P. Xu, A. H. Pfeiffenberger, C. D. Ellis, and M. C. Hamilton, “Fabrication and Characterization of Double Helix Structures for Compliant and Reworkable Electrical Interconnects,” Journal of Microelectromechanical Systems, Vol. 23, No. 5, pp.1219-1227, 2014.
[12]W. Chen and S. K. Sitaraman, “Area-array of 3-arc-fan compliant interconnects as effective drop-impact isolator for Microsystems,” Journal of Microelectromechanical Systems, Vol. 25, No. 2, pp.337-346, 2016.
[13]K. K. Yu and F. Tung, “Solder Bump Fabrication by Electroplating For Flip-Chip Application,” Proceedings of 15th IEEE/CHMT International Electronic Manufacturing Technology Symposium, Santa Clara, USA, Oct. 4-6 1993.
[14]C. C. An, M. H. Wu, Y. W. Huang, T. H. Chen, C. H. Chao, and W. Y. Yeh, “Study on Flip Chip Assembly of High Density Micro-LED Array,” 6th of International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taipei, Taiwan, Oct. 19-21 2011.
[15]Z. J. Liu, W. C. Chong, K. M. Wong, and K. M. Lau, “360 PPI Flip-Chip Mounted Active Matrix Addressable Light Emitting Diode on Silicon (LEDoS) Micro-Displays,” Journal of Display Technology, Vol. 9, No. 8, pp. 678-682, 2013.
[16]Z. J. Liu, W. C. Chong, K. M. Wong, C. W. Keung, and K. M. Lau, “Investigation of Forward Voltage Uniformity in Monolithic Light-Emitting Diode Arrays,” IEEE Photonics Technology Letters, Vol. 25, No. 13, pp. 1290-1293, 2013.
[17]X. Zhang, P. Li, X. Zou, J. Jiang, S. H. Yuen, C. W. Tang, and K. M. Lau, “Active Matrix Monolithic LED Micro-Display Using GaN-on-Si Epilayers,” IEEE Photonics Technology Letters, Vol. 31, No. 11, pp. 865-868, 2019.
[18]材料力學/ James M. Gere原著,林坤楠譯,二版,台北市,新加坡商聖智學習,2012。
[19]J. K. Luo, D. P. Chu, A. J. Flewitt, S. M. Spearing, N. A. Fleck, and W. I. Milne, “Uniformity Control of Ni Thin-Film Microstructures Deposited by Through-Mask Plating,” Journal of The Electrochemical Society, Vol. 152, No. 1, pp. C36-C41, 2005.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文