(3.220.231.235) 您好!臺灣時間:2021/03/07 10:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李旻彥
研究生(外文):LEE, MIN-YAN
論文名稱:鋅基奈米鐵氧磁體/PCA-PEG-PCA共聚物之核-殼複合結構合成、特性檢測及熱療應用
論文名稱(外文):Zn-based Ferrite Nanoparticle/PCA-PEG-PCA Copolymer Core-Shell Structured Composites: Synthesis, Characterization And Hyperthermia Applications
指導教授:蔡健益
指導教授(外文):TSAY, CHIEN-YIE
口試委員:蔡健益陳錦山陳貞夙楊明達
口試委員(外文):TSAY, CHIEN-YIECHEN, GIIN-SHANCHEN, JEN-SUEYANG, MIN-DA
口試日期:2020-07-14
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:133
中文關鍵詞:鐵氧磁體溶劑熱法超支化聚合物表面改質熱療
外文關鍵詞:ferrite nanoparticlessolvothermal methodhyperbranched polymersurface modificationhyperthermia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
誌謝 I
摘要 II
Abstract III
目錄 V
圖目錄 IX
表目錄 XIV
第一章 前言 1
第二章 文獻回顧 4
2.1 熱療於癌症治療之應用 4
2.1.1 現行的癌症治療方式 4
2.1.2 熱療簡介 6
2.1.3 熱療機制 7
2.1.4 感應加熱效率 9
2.1.5 居禮溫度 12
2.2 磁性材料 13
2.2.1 磁滯曲線 13
2.2.2 磁性理論 15
2.2.3 磁性材料分類 17
2.3 磁性奈米鐵氧磁體 18
2.3.1 尖晶石型鐵氧磁體簡介 18
2.3.2 鐵氧磁體應用 20
2.3.3 鋅基奈米鐵氧磁體介紹 21
2.3.4 錳離子部分取代鋅基奈米鐵氧磁體介紹 23
2.4 溶劑熱法 25
2.4.1 奈米鐵氧磁體粉體之製備方法 25
2.4.2 水熱法簡介 27
2.4.3 溶劑熱法簡介 29
2.4.4 溶劑熱法之優缺點 30
2.5 奈米鐵氧磁體粉體之表面改質 32
2.5.1 奈米鐵氧磁體粉體表面改質簡介 32
2.5.2 奈米鐵氧磁體粉體表面改質之塗層分類 34
2.6 超支化聚合物 35
2.6.1 超支化聚合物簡介 35
2.6.2 超支化聚合物應用 36
2.6.3 PCA-PEG-PCA共聚物塗層介紹 37
第三章 實驗方法與步驟 39
3.1 實驗規劃 39
3.2 實驗使用之藥品與分析儀器 41
3.3 實驗流程 43
3.3.1 鋅基奈米鐵氧磁體粉體製備 43
3.3.2 鋅錳奈米鐵氧磁體粉體製備 45
3.3.3 PCA-PEG-PCA共聚物製備 47
3.3.4 奈米鐵氧磁體/PCA-PEG-PCA複合材料合成 49
3.4 實驗分析儀器介紹 51
3.4.1 X射線繞射儀 51
3.4.2 穿透式電子顯微鏡 51
3.4.3 感應耦合電漿光譜儀 52
3.4.4 超導量子干涉儀 52
3.4.5 磁性熱重分析儀 53
3.4.6 傅立葉轉換紅外光譜儀 53
3.4.7 電子順磁共振光譜儀 54
3.4.8 差示掃描熱分析儀-熱重分析儀 54
3.4.9 動態光散射儀 55
3.4.10 紫外光-可見光分光光譜儀 55
3.4.11 高頻率交流磁場 56
3.4.12 實驗分析儀器流程圖 57
第四章 結果與討論 58
4.1 鋅基奈米鐵氧磁體粉體之特性分析 58
4.1.1 晶體結構分析 58
4.1.2 顯微組織觀察 62
4.1.3 化學組成分析 67
4.1.4 磁性檢測 70
4.1.5 傅立葉轉換紅外光譜分析 75
4.1.6 電子順磁共振光譜分析 77
4.2 鋅奈米鐵氧磁體/PCA-PEG-PCA之特性分析 79
4.2.1 熱重損失分析 79
4.2.2 傅立葉轉換紅外光譜分析 81
4.2.3 動態光散射粒徑分析 83
4.2.4 奈米粉體在水中懸浮之穩定性 85
4.2.5 感應加熱效率分析 87
4.3 鋅錳奈米鐵氧磁體之特性分析 92
4.3.1 晶體結構分析 92
4.3.2 顯微組織觀察 95
4.3.3 化學組成分析 98
4.3.4 磁性檢測 102
4.3.5 傅立葉轉換紅外光譜分析 106
4.3.6 電子順磁共振光譜分析 108
4.4 鋅錳奈米鐵氧磁體/PCA-PEG-PCA之特性分析 110
4.4.1 動態光散射粒徑分析 110
4.4.2 感應加熱效率分析 112
4.5 鋅基與鋅錳奈米鐵氧磁體粉體之特性比較 116
第五章 結論 118
參考文獻 119
附錄一 Fe3O4 JCPDS card No. 75-0449 130
附錄二 ZnFe2O4 JCPDS card No. 89-1009 131
附錄三 MnFe2O4 JCPDS card No. 73-1964 132
附錄四 鋅基奈米鐵氧磁體之感應加熱效率分析 133


[1]https://www.mohw.gov.tw/cp-16-54482-1.html
[2]L. Y.Zhao, J. Y. Liu, W. W. Ouyang, D. Y. Li, L. Li, L. Y. Li, J. T. Tang, Magnetic-mediated hyperthermia for cancer treatment: research progress and clinical trials, Chinese Phys. B. 2013, 22, 108104.
[3]E. Bull, S. Y. Madani, R. Sheth, A. Seifalian, M. Green, A. M. Seifalian, Stem cell tracking using iron oxide nanoparticles, Int. J. Nanomedicine. 2014, 9, 1641-1653.
[4]https://www.biomedviews.com/抗癌搏生技與生機/
[5]W. Busch, Aus der sitzung der medicinischen, Berl KlinWochenschr. 1867, 13, 137.
[6]W. B. Coley, Contribution to the knowledge of sarcoma, Ann. Surg. 1891, 14, 199-220.
[7]H. Chiriac, T. Petreus, E. Carasevici, L. Labusca, D. D. Herea, C. Danceanu, N. Lupu, In vitro cytotoxicity of Fe-Cr-Nb-B magnetic nanoparticles under high frequency electromagnetic field, J. Magn. Magn. Mater. 2015, 380, 13-19.
[8]A. Hervault, N. T. K.Thanh, Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer, Nanoscale. 2014, 6, 11553-1573.
[9]C. S. S. R. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv. Drug Deliv. Rev. 2011, 63, 789-808.
[10]E. Bull, S. Y. Madani, R .Sheth, A. Seifalian, M. Green, A. M. Seifalian, Stem cell tracking using iron oxide nanoparticles, Journal of Nanomedicine. 2014, 31, 1641-1653.
[11]M. Kallumadil, M. Tada, T. Nakagawa, M. Abe, P. Southern, Q. A. Pankhurst, Suitability of commercial colloids for magnetic hyperthermia, J. Magn. Magn. Mater. 2009, 321, 1509-1513.
[12]M. Szekeres, I. Tóth, E. Illés, A .Hajdú, I. Zupkó, K. Farkas, G. Oszlánczi, L. Tiszlavicz, E. Tombácz, Chemical and colloidal stability of carboxylated core-shell magnetite nanoparticles designed for biomedical applications, Int. J. Mol. Sci. 2013, 14, 14550-14574.
[13]M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, N. Gu, Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field, J. Magn. Magn. Mater. 2004, 268, 33-39.
[14]Z. Hedayatnasab, F. Abnisa, W. M. A. W. Daud, Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application, Mater. Des.2017, 123, 174-196.
[15]J. Mohapatra, M. Xing, J. P. Liu, Inductive thermal effect of ferrite magnetic nanoparticles, Materials. 2019, 12, 3208.
[16]E. Oumezzine, S. Hcini, M. Baazaoui, E. K. Hlil, M. Oumezzine, Structural, magnetic and magnetocaloric properties of Zn06-xNixCu04Fe2O4 ferrite nanoparticles prepared by Pechini sol-gel method, Powder Technol. 2015, 278, 189-195.
[17]S. V. Jadhav, B. M. Kim, H. Y. Lee, I. C. Im, A. A. Rokade, S. S. Park, M. P. Patil, G. D. Kim, Y. S. Yu, S. H. Lee, Induction heating and in vitro cytotoxicity studies of MnZnFe2O4 nanoparticles for self-controlled magnetic particle hyperthermia, J. Alloys Compd. 2018, 745, 282-291.
[18]G. Ferk, M. Drofenik, D .Lisjak, A. Hamler, Z. Jagličić, D. Makovec, Synthesis and characterization of Mg1+xFe2-2xTixO4 nanoparticles with an adjustable Curie point, J. Magn. Magn. Mater. 2014, 350, 124-128.
[19]M. Srivastava, S. K. Alla, S. S. Meena, N. Gupta, R. K. Mandal, N. K. Prasad, ZnXFe3-xO4 (0.01 ≤ x ≤ 0.8) nanoparticles for controlled magnetic hyperthermia application, New J. Chem. 2018, 42, 7144-7153.
[20]D. Lisjak, A. Mertelj, Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications, Prog. Mater. Sci. 2018, 95, 286–328.
[21]杜怡君、張毓娟、翁乙壬、蘇怡帆、陳世毓、梁哲銘、葉巧雯、吳信璋、卓育泯, 磁性基本特性及磁性材料應用, 國立台灣大學化學系. 1989.
[22]http://www.chemohollic.com/2016/07/spinels-normal-or-inverse.html
[23]L. H. Reddy, J. L. Arias, J. Nicolas, P. Couvreur, Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications, Chem. Rev. 2012, 112, 5818-5878.
[24]S. Karimi, P. Kameli, H. Ahmadvand, H. Salamati, Effects of Zn-Cr-substitution on the structural and magnetic properties of Ni1−xZnxFe2−xCrxO4 ferrites, Ceram. Int. 2016, 42, 16948-16955.
[25]N. Modaresi, R. Afzalzadeh, B. Aslibeiki, P. Kameli, Competition between the impact of cation distribution and crystallite size on properties of MnxFe3−xO4 nanoparticles synthesized at room temperature, Ceram. Int. 2017, 43,15381-15391.
[26]S. S. Pati, S .Gopinath, G. Panneerselvam, M. P. Antony, J. Philip, High temperature phase transformation studies in magnetite nanoparticles doped with Co2+ ion, in J. Appl. Phys. 2012, 112, 054320.
[27]X. Liu, J. Liu, S. Zhang, Z. Nan, Q. Shi, Structural, magnetic, and thermodynamic evolutions of Zn-doped Fe3O4 nanoparticles synthesized using a one-step solvothermal method, J. Phys. Chem. C. 2016, 120, 1328-1341.
[28]J. Liu, Y. Bin, M. Matsuo, Magnetic behavior of Zn-Doped Fe3O4 nanoparticles estimated in terms of crystal domain size, J. Phys. Chem. C. 2012, 116, 134-143.
[29]J. M. Byrne, V. S. Coker, E. Cespedes, P. L. Wincott, D. J. Vaughan, R. A. D. Pattrick, G. van derLaan, E. Arenholz, F. Tuna, M. Bencsik, J. R. Lloyd, N. D. Telling, Biosynthesis of zinc substituted magnetite nanoparticles with enhanced magnetic properties, Adv. Funct. Mater. 2014, 24, 2518-2529.
[30]J. Wan, X. Jiang, H. Li, K. Chen, Facile synthesis of zinc ferrite nanoparticles as non-lanthanide T1 MRI contrast agents, J. Mater. Chem. 2012, 22, 13500-13505.
[31]S. B. Goldhaber, Trace element risk assessment: Essentiality vs toxicity, Regul. Toxicol. Pharmacol. 2003, 38, 232-242.
[32]A. Verma, T. C. Goel, R. G. Mendiratta, P. Kishan, Magnetic properties of nickel-zinc ferrites prepared by the citrate precursor method, J. Magn. Magn. Mater. 2000, 208, 13-19.
[33]C. Upadhyay, H. C. Verma, S. Anand, Cation distribution in nanosized Ni-Zn ferrites, J. Appl. Phys. 2004, 95, 5746-5751.
[34]H. Kavas, A. Baykal, M. S. Toprak, Y. Köseoǧlu, M. Sertkol, B. Aktaş, Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route, J. Alloys Compd. 2009, 479, 49-55.
[35]Q. Tian, Q. Wang, Q. Xie, J. Li, Aqueous solution preparation, structure, and magnetic properties of nano-granular ZnxFe3-xO4 ferrite films, Nanoscale Res. Lett. 2010, 5, 1518-1523.
[36]J. Smit, H. W. Eindhoven, T. Netherlands, Ferrites, Philips technical library.1959.
[37]T. Zargar, A. Kermanpur, Effects of hydrothermal process parameters on the physical, magnetic and thermal properties of Zn0.3Fe2.7O4 nanoparticles for magnetic hyperthermia applications, Ceram. Int. 2017, 43, 5794-5804.
[38]B. Behdadfar, A. Kermanpur, H. S. Aliabadi, M. D. P. Morales, M. Mozaffari, Synthesis of aqueous ferrofluids of ZnxFe3-xO4 nanoparticles by citric acid assisted hydrothermal-reduction route for magnetic hyperthermia applications, J. Magn. Magn. Mater. 2012, 324, 2211-2217.
[39]A. Hanini, L. Lartigue, J. Gavard, K. Kacem, C. Wilhelm, F. Gazeau, F. Chau, S. Ammar, Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells, J. Magn. Magn. Mater. 2016,416, 315-320.
[40]L. B. D. Mello, L. C. Varanda, F. A. Sigoli, I. O. Mazali, Co-precipitation synthesis of (Zn-Mn)-co-doped magnetite nanoparticles and their application in magnetic hyperthermia, J. Alloys Compd. 2019, 779, 698-705.
[41]A. Yang, C. Vittoria, V. G. Harris, X. Zuo, Magnetism, structure, and cation distribution in MnFe2O4 films processed by conventional and alternating target laser ablation deposition, IEEE Trans. Magn. 2006, 42, 2870-2872.
[42]C. Venkataraju, G. Sathishkumar, K. Sivakumar, Effect of cation distribution on the structural and magnetic properties of nickel substituted nanosized Mn-Zn ferrites prepared by co-precipitation method, J. Magn. Magn. Mater. 2010, 322, 230-233.
[43]P. T. Phong, P. H. Nam, D. H. Manh, I. J. Lee, Mn0.5Zn0.5Fe2O4 nanoparticles with high intrinsic loss power for hyperthermia therapy, J. Magn. Magn. Mater. 2017, 433, 76-83.
[44]S. Nasrin, F. U. Z. Chowdhury, S. M. Hoque, Study of hydrodynamic size distribution and hyperthermia temperature of chitosan encapsulated zinc-substituted manganese nano ferrites suspension, Phys. B Condens. Matter. 2019, 561, 54-63.
[45]X. Hou, J. Feng, X. Liu, Y. Ren, Z. Fan, M. Zhang, Magnetic and high rate adsorption properties of porous Mn1-xZnxFe2O4 (0 ≤ x ≤ 0.8) adsorbents, J. Colloid Interface Sci. 2011,353, 524-529.
[46]J. Liu, J. Zhang, L. Wang, Y. Li, D. Zhang, Biocompatibility study of Mn0.5Zn0.5Fe2O4 magnetic nanoparticles,Key engineering materials. 2011, 483, 552-558.
[47]P. H. Nam, N. X. Phuc, P. H. Linh, L. T. Lu, D. H. Manh, P. T. Phong, I. J. Lee, Effect of zinc on structure, optical and magnetic properties and magnetic heating efficiency of Mn1-xZnxFe2O4 nanoparticles, Phys. B Condens. Matter.2018, 550, 428-435.
[48]S. Feijoo, S. González-García, Y. Moldes-Diz, C. Vazquez-Vazquez, G. Feijoo, M. T. Moreira, Comparative life cycle assessment of different synthesis routes of magnetic nanoparticles, J. Clean. Prod. 2017, 143, 528-538.
[49]E. O. Sari, A. Fadli, A. Amri, The 3 hours-hydrothermal synthesis of high surface area superparamagnetic Fe3O4 core-shell nanoparticles, J. Sains Mater. Indones. 2018, 19, 9-13.
[50]G. M. Sulaiman, A. T. Tawfeeq, A. S. Naji, Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines, Artif. Cells, Nanomedicine Biotechnol. 2018, 46, 1215-1229.
[51]V. Mameli, M. S. Angotzi, C. Cara, C. Cannas, Liquid phase synthesis of nanostructured spinel ferrites-A Review, J. Nanosci. Nanotechnol. 2019, 19 4857-4887.
[52]K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology, Prog. Cryst. Growth Charact. Mater. 2007, 53, 117-166.
[53]M. Yoshimura, K. Byrappa, Hydrothermal processing of materials: Past, present and future, J. Mater. Sci. 2008, 43, 2085-2103.
[54]L. M. Demetsyanets, A. N. Lopachev, Some problems of hydrothermal cystallstallization process under hydrothermal condition, Univ. London Press. 1973.
[55]G. Demazeau, A. Largeteau, Hydrothermal/solvothermal crystal growth: an old but adaptable process, zeitschrift für anorg. Und Allg. Chemie. 2015, 641, 159-163.
[56]S. H. Yu, Hydrothermal/solvothermal processing of advanced ceramic materials, J. Ceram. Soc. Japan. 2001, 109, 65-75.
[57]Y. Konishi, T. Kawamura, S. Asai, Preparation and characterization of fine magnetite particles from iron(III) carboxylate dissolved in organic solvent, Ind. Eng. Chem. Res. 1993, 32, 2888-2891.
[58]D. Chen, R. Xu, Solvothermal synthesis and characterization of PbTiO3 powders, J. Mater. Chem. 1998, 8, 965-968.
[59]Z. X. Deng, C. Wang, X. M. Sun, Y. D. Li, Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route, Inorg. Chem. 2002, 41, 869-873.
[60]J. Lu, P. Qi, Y. Peng, Z. Meng, Z. Yang, W. Yu, Y. Qian, Metastable MnS crystallites through solvothermal synthesis, Chem. Mater. 2001, 13, 2169-2172.
[61]N. Ye, T. Yan, Z. Jiang, W. Wu, T. Fang, A review: Conventional and supercritical hydro/solvothermal synthesis of ultrafine particles as cathode in lithium battery, Ceram. Int. 2018, 44, 4521-4537.
[62]J. Li, Q. Wu, J. Wu. Synthesis of nanoparticles via solvothermal and hydrothermal methods, Handbook of Nanoparticles. 2015, 1-28.
[63]T. Zargar, A. Kermanpur, S. Labbaf, A. B. Houreh, M. H. N. Esfahani, PEG coated Zn0.3Fe2.7O4 nanoparticles in the presence of Fe2O3 phase synthesized by citric acid assisted hydrothermal reduction process for magnetic hyperthermia applications, Mater. Chem. Phys. 2018, 212, 432-439.
[64]C. Hasirci, O. Karaagac, H. Köçkar, Superparamagnetic zinc ferrite: A correlation between high magnetizations and nanoparticle sizes as a function of reaction time via hydrothermal process, J. Magn. Magn. Mater. 2019, 474, 282-286.
[65]P. A. Vinosha, L. A. Mely, J. E. Jeronsia, S. Krishnan, S. J. Das, Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route, Optik (Stuttg). 2017, 134, 99-108.
[66]N. Modaresi, R. Afzalzadeh, B. Aslibeiki, P. Kameli, A. G. Varzaneh, I. Orue, V. A. Chernenko, Magnetic properties of ZnxFe3−xO4 nanoparticles: A competition between the effects of size and Zn doping level, J. Magn. Magn. Mater. 2019, 482, 206-218.
[67]S. P. John, J. Mathew, Determination of ferromagnetic, superparamagnetic and paramagnetic components of magnetization and the effect of magnesium substitution on structural, magnetic and hyperfine properties of zinc ferrite nanoparticles, J. Magn. Magn. Mater. 2019, 475, 160-170.
[68]T. R. Tatarchuk, N. D. Paliychuk, M. Bououdina, B. A. Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles, J. Alloys Compd. 2018, 731, 1256-1266.
[69]A. Mohammadi, M. Barikani, M. Barmar, Effect of surface modification of Fe3O4 nanoparticles on thermal and mechanical properties of magnetic polyurethane elastomer nanocomposites, J. Mater. Sci. 2013, 48, 7493-7502.
[70]S. N. Sun, C. Wei, Z. Z. Zhu, Y. L. Hou, S. S. Venkatraman, Z. C. Xu, Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications, Chinese Phys. B. 2014, 23, 007503.
[71]W. Ling, M. Wang, C. Xiong, D. Xie, Q. Chen, X. Chu, X. Qiu, Y. Li, X. Xiao, Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles, J. Mater. Res. 2019, 34, 1828-1844.
[72]N. Zhu, H. Ji, P. Yu, J. Niu, M. U. Farooq, M. W. Akram, I. O. Udego, H. Li, X. Niu, Surface modification of magnetic iron oxide nanoparticles, Nanomaterials. 2018, 810.
[73]Y. Zheng, S. Li, Z. Weng, C. Gao, Hyperbranched polymers: advances from synthesis to applications, Chem. Soc. Rev. 2015, 44, 4091-4130.
[74]Y. Segawa, T. Higashihara, M. Ueda, Hyperbranched polymers with controlled degree of branching from 0 to 100%, J. Am. Chem. Soc. 2010, 132, 11000-11001.
[75]M. Adeli, Novel polymers and nanoscience, Transworld Research Network, 2008.
[76]B. D. Ulery, L. S. Nair, C. T. Laurencin, Biomedical applications of biodegradable polymers, J. Polym. Sci. Part B Polym. Phys. 2011, 49, 832-864.
[77]E. F. Connor, I. Lees, D. Maclean, Polymers as drugs-Advances in therapeutic applications of polymer binding agents, J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3146-3157.
[78]S. Chen, X. Z. Zhang, S. X. Cheng, R. X. Zhuo, Z. W. Gu, Functionalized amphiphilic hyperbranched polymers for targeted drug delivery, Biomacromolecules. 2008, 9, 2578-2585.
[79]A. S. Alavi, A. Meshkini, Fabrication of poly(ethylene glycol)-coated mesoporous nanocomposite ZnO@Fe2O3 for methotrexate delivery: An integrated nanoplatform for dual-mode cancer therapy, Eur. J. Pharm. Sci. 2018, 115, 144-157.
[80]A. Mukhopadhyay, N. Joshi, K. Chattopadhyay, G. De, A Facile Synthesis of PEG-Coated Magnetite (Fe3O4) Nanoparticles and Their Prevention of the Reduction of Cytochrome C, ACS Appl. Mater. 2012, 4, 142-149.
[81]J. V. Jokerst, T. Lobovkina, R. N. Zare, S. S. Gambhir, Nanoparticle PEGylation for imaging and therapy, Nanomedicine. 2011, 6, 715-728.
[82]K. Andreas, R. Georgieva, M. Ladwig, S. Mueller, M. Notter, M. Sittinger, J. Ringe, Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking, Biomaterials. 2012, 33, 4515-4525.
[83]A. Saraswathy, S. S. Nazeer, M. Jeevan, N. Nimi, S. Arumugam, V. S. Harikrishnan, P. R. H. Varma, R. S. Jayasree, Citrate coated iron oxide nanoparticles with enhanced relaxivity for in vivo magnetic resonance imaging of liver fibrosis, Colloids and Surfaces B: Biointerfaces. 2014, 117, 216-224.
[84]A. T. Naeini, M. Adeli, M. Vossoughi, Poly(citric acid)-block-poly(ethylene glycol) copolymers-new biocompatible hybrid materials for nanomedicine, Nanomedicine Nanotechnology, Biol. Med. 2010, 6, 556-562.
[85]S. Hatamie, B. Parseh, M. M. Ahadian, F. Naghdabadi, R. Saber, M. Soleimani, Heat transfer of PEGylated cobalt ferrite nanofluids for magnetic fluid hyperthermia therapy: In vitro cellular study, J. Magn. Magn. Mater. 2018, 462, 185-194.
[86]S. K. Sharma, S. N. Dolia, R. Kumar, M. Knobel, S. Kumar, M. Singh, Magnetic study of nanoparticles of Mg0.95Mn0.05Fe2O4 spinel ferrite, Indian Journal of Pure & Applied Physics. 2007, 141, 203-208.
[87]Y. R. Luo, Comprehensive handbook of chemical bond energies CRC Press, Taylor & Francis Group, Boca Baton, FL, 2007.
[88]L. Guo, X. Shen, X. Meng, Y. Feng, Effect of Sm3+ ions doping on structure and magnetic properties of nanocrystalline NiFe2O4 fibers, J. Alloys Compd. 2010, 490, 301-306.
[89]J. Qian, F. Sun, L. Qin, Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals, Mater. Lett. 2012, 82, 220-223.
[90]Z. Zhou, G. Jin, H. Liu, J. Wu, J. Mei, Crystallization mechanism of zeolite A from coal kaolin using a two-step method, Appl. Clay Sci. 2014, 97, 110-114.
[91]X. Yan, Y. Imai, D. Shimamoto, Y. Hotta, Relationship study between crystal structure and thermal/mechanical properties of polyamide 6 reinforced and unreinforced by carbon fiber from macro and local view, Polymer (Guildf). 2014, 55, 6186-6194.
[92]J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles, J. Magn. Magn. Mater. 2011, 323, 133-137.
[93]Y. Yang, X. Liu, Y. Yang, W. Xiao, Z. Li, D. Xue, F. Li, J. Ding, Synthesis of nonstoichiometric zinc ferrite nanoparticles with extraordinary room temperature magnetism and their diverse applications, J. Mater. Chem. C. 2013, 1, 2875-2885.
[94]S. K. Shaw, S. K. Alla, S. S. Meena, R. K. Mandal, N. K. Prasad, Stabilization of temperature during magnetic hyperthermia by Ce substituted magnetite nanoparticles, J. Magn. Magn. Mater. 2017, 434, 181-186.
[95]S. Shatooti, M. Mozaffari, The effect of Zn2+ substitution on magnetic properties of maghemite nanoparticles, prepared by one-pot coprecipitation method at room temperature, J. Mater. Sci. Mater. Electron. 2020, 31, 1891-1903.
[96]Z. Azadi Motlagh, M. Mozaffari, J. Amighian, Preparation of nano-sized Al-substituted yttrium iron garnets by the mechanochemical method and investigation of their magnetic properties, J. Magn. Magn. Mater. 2009, 321, 1980-1984.
[97]E. Suharyadi, E. A. Setiadi, N. Shabrina, T. Kato, S. Iwata, Magnetic properties and microstructures of polyethylene glycol (PEG)- coated cobalt ferrite (CoFe2O4) nanoparticles synthesized by coprecipitation method, in Adv. Mater. Res. 2014, 126-133.
[98]Z. Wang, Y. Xie, P. Wang, Y. Ma, S. Jin, X. Liu, Microwave anneal effect on magnetic properties of Ni0.6Zn0.4Fe2O4 nano-particles prepared by conventional hydrothermal method, J. Magn. Magn. Mater. 2011, 323, 3121-3125.
[99]F. Saffari, P. Kameli, M. Rahimi, H .Ahmadvand, H. Salamati, Effects of Co-substitution on the structural and magnetic properties of NiCoxFe2-xO4 ferrite nanoparticles, Ceram. Int. 2015, 41, 7352-7358.
[100]M. Adeli, F. Hakimpoor, M. Ashiri, R. Kabiri, M. Bavadi, Anticancer drug delivery systems based on noncovalent interactions between carbon nanotubes and linear-dendritic copolymers, Soft Matter. 2011, 7, 4062-4070.
[101]K. Muvvala, R. Surendra, M. S. Dutta, R. Rao, N. L. Adolphi, D. L. Huber, H. C. Bryant, Mechanisms of hyperthermia in magnetic nanoparticles, J. Phys. D. Appl. Phys. 2013, 46, 312001.
[102]G. Vallejo-Fernandez, O. Whear, A.G. Roca, S. Hussain, J. Timmis, V. Patel, K. O'Grady, Mechanisms of hyperthermia in magnetic nanoparticles, J. Phys. D. Appl. Phys. 2013, 46, 312001.
[103]G. S. N. Rao, O. E. Caltun, K. R. Rao, P. S. V. Subba Rao, B. Parvatheeswara Rao, Improved magnetostrictive properties of Co-Mn ferrites for automobile torque sensor applications, J. Magn. Magn. Mater.2013, 341, 60-64.


電子全文 電子全文(網際網路公開日期:20260101)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔