(18.210.12.229) 您好!臺灣時間:2021/03/05 12:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳冠儒
研究生(外文):WU,KUAN-RU
論文名稱:鈦對FCC高熵合金固溶強化與析出強化的效應
論文名稱(外文):Effects of Ti on solid solution strengthening and precipitation strengthening of FCC high-entropy alloy
指導教授:孫道中
指導教授(外文):SUN,DAO-ZHONG
口試委員:孫道中林巧奇林昆明
口試委員(外文):SUN,DAO-ZHONGLIN,QIAO-QILIN,KUN-MING
口試日期:2019-12-23
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:186
中文關鍵詞:高熵合金固溶強化時效處理析出強化
外文關鍵詞:high-entropy alloysolid solution strengtheningage treatmentprecipitation strengthening
相關次數:
  • 被引用被引用:0
  • 點閱點閱:42
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究改良Al0.3CoCrFeNi及CoCrFeNiTi0.3高熵合金的合金組成設計,並適度降低合金組成元素Co與Cr含量以降低成本及避免有害σ相產生,提高Ni含量以穩定FCC基地,設計在Al-Co-Cr-Fe-Ni FCC基之高熵合金中添加不同Ti含量的四種合金(表示Ti0、Ti0.1、Ti0.2及Ti0.3),探討大原子鈦對FCC高熵合金固溶強化與析出強化效應,可望開發出極具潛力的延性-高強度的FCC高熵合金。
隨著Ti含量增加,鑄材合金及熱輥壓合金的硬度隨之增加,因Ti的原子半徑大於其他元素造成固溶強化效果與Ti對其他元素的鍵結能強,導致硬度上升。此外,熱輥壓合金之Young's modulus、YS及UTS隨著Ti含量增加而上升,分別由86 GPa、341 MPa和593 MPa上升至322 GPa、1016 MPa和1315 MPa但伸長率由49 %下降至7 %。
Ti0熱輥壓合金經時效處裡後,於700℃時效展現最佳硬化效果,硬度為HV265,Ti0.1-Ti0.3熱輥壓合金經時效處裡後,於800℃時效展現最佳硬化效果,硬度分別為HV376、HV438及HV481,此歸因於大量γ’相析出硬化現象所導致。合金經時效處理後之Young's modulus、YS及UTS隨Ti含量的增加而增加,分別由135 GPa、453 MPa和759 MPa上升至326 GPa、1053 MPa和1394 MPa,歸因於隨Ti含量的上升,析出硬化效果越來越顯著,造成整體的拉伸強度上升,但伸長率由34 %下降至6 %。

This research modifies the alloy compositions of Al0.3CoCrFeNi and CoCrFeNiTi0.3 high entropy alloys, and moderately decreases the contents of Co and Cr to reduce cost and avoid harmful  phase, and increases Ni content to stabilize FCC base. We design four Al-Co-Cr-Fe-Ni FCC high entropy alloys with different Ti content (denote Ti0, Ti0.1, Ti0.2 and Ti0.3) to investigate the effects of large atom Ti on solid solution strengthening and precipitation strengthening effects of FCC high entropy alloy, and expect to develop a potential high strength-ductile FCC high entropy alloy.
With the Ti content increase, the hardness of the as-cast and as-rolled alloys increase because the atomic radius of Ti is larger than other elements and stronger bonding energy between Ti and other elements, result in the increases of solid solution strengthening and hardness, respectively. In addition, with the increases of Ti contents, the Young's modulus, YS, and UTS of as-rolled alloys increase from 86 GPa, 341 MPa, and 593 MPa to 322 GPa, 1016 MPa, and 1315 MPa, respectively. However, the elongation decreases from 49% to 7 %.
The hot-rolled Ti0 alloy shows an optimal age hardening effect at 700 ℃, and its hardness is HV265. The as-rolled Ti0.1, Ti0.2, and Ti0.3 alloys display the best age hardening effect at 800 ℃, and their hardness are HV376, HV438 and HV481, respectively. These are due to the precipitation hardening by a large number of γ' phases. The precipitation hardening effect becomes more and more significant with the increases of Ti contents, results in the Young's modulus, YS, and UTS of the aged alloys increasing from 135 GPa, 453 MPa, and 759 MPa to 326 GPa, 1053 MPa, and 1394 MPa, respectively, However, the elongation decreases from 34% to 6%.

誌謝 I
摘要 II
ABSTRACT III
文目錄 III
圖目錄 IX
表目錄 XIX
1.前言 1
1.1.文獻回顧 7
1.1.1高熵合金 7
1.1.2 鎳基超合金硬化機制 25
1.2研究目的 28
2. 實驗方法 29
2.1合金組成 29
2.2合金製備 29
2.3時效處理 30
2.4硬度分析 30
2.5微結構分析 31
2.6穿透式電子顯微鏡(TEM)分析 31
2.7 X-ray結構鑑定 32
2.8拉伸試驗 32
3. 實驗結果與討論 36
3.1 合金鑄材 36
3.1.1 微結構分析 36
3.1.1.1合金鑄材結構之X-ray繞射分析 36
3.1.1.2 Ti0合金鑄材 40
3.1.1.3 Ti0.1合金鑄材 43
3.1.1.4 Ti0.2合金鑄材 46
3.1.1.5 Ti0.3合金鑄材 49
3.1.1.6 1200℃熱輥壓Ti0合金 52
3.1.1.7 1200℃熱輥壓Ti0.1合金 54
3.1.1.8 1200℃熱輥壓Ti0.2合金 56
3.1.1.9 1200℃熱輥壓Ti0.3合金 58
3.1.2 機械性質分析 60
3.1.2.1 硬度分析 60
3.1.2.2 拉伸試驗 63
3.1.3 合金鑄材及熱輥壓合金之結論 66
3.2 熱輥壓合金時效處理 67
3.2.1 Ti0合金 67
3.2.1.1 時效硬化曲線 67
3.2.1.2 500℃-24小時 時效處理微結構 70
3.2.1.3 600℃-24小時 時效處理微結構 73
3.2.1.4 700℃-24小時 時效處理微結構 76
3.2.1.5 800℃-24小時 時效處理微結構 80
3.2.1.6 900℃-24小時 時效處理微結構 83
3.2.1.7 1000℃-24小時 時效處理微結構 86
3.2.1.8 1100℃-24小時 時效處理微結構 89
3.2.2 Ti0.1合金 91
3.2.2.1 時效硬化曲線 91
3.2.2.2 500℃-24小時 時效處理微結構 94
3.2.2.3 600℃-24小時 時效處理微結構 97
3.2.2.4 700℃-24小時 時效處理微結構 100
3.2.2.5 800℃-24小時 時效處理微結構 103
3.2.2.6 900℃-24小時 時效處理微結構 107
3.2.2.7 1000℃-24小時 時效處理微結構 110
3.2.2.8 1100℃-24小時 時效處理微結構 113
3.2.3 Ti0.2合金 115
3.2.3.1 時效硬化曲線 115
3.2.3.2 500℃-24小時 時效處理微結構 118
4.2.3.3 600℃-24小時 時效處理微結構 120
3.2.3.4 700℃-24小時 時效處理微結構 123
3.2.3.5 800℃-24小時 時效處理微結構 126
3.2.3.6 900℃-24小時 時效處理微結構 130
3.2.3.7 1000℃-24小時 時效處理微結構 133
3.2.3.8 1100℃-24小時 時效處理微結構 136
3.2.4 Ti0.3合金 138
3.2.4.1時效硬化曲線 138
3.2.4.2 500℃-24小時 時效處理微結構 141
3.2.4.3 600℃-24小時 時效處理微結構 143
3.2.4.4 700℃-24小時 時效處理微結構 145
3.2.4.5 800℃-24小時 時效處理微結構 148
3.2.4.6 900℃-24小時 時效處理微結構 152
3.2.4.7 1000℃-24小時 時效處理微結構 155
3.2.4.8 1100℃-24小時 時效處理微結構 158
3.2.5 性質分析 161
3.2.5.1 Ti0合金 時效拉伸分析 161
3.2.5.2 Ti0.1合金 時效拉伸分析 164
3.2.5.3 Ti0.2合金 時效拉伸分析 167
3.2.5.4 Ti0.3合金 時效拉伸分析 170
3.2.5.5 各合金 時效拉伸分析 173
3.2.6 Ti0-Ti0.3合金相變化總結 176
4. 結論 180
5. 後續研究建議 182
6. 參考文獻 183


[1]A. Inoue: Bulk Amorphous Alloys-Preparation and Fundamental Characteristics, Meterials Science Foundations, Trans Tech Publications, Netherlands, vol. 4 (1998)1-116.
[2]Handbook Committee: Metals Handbook, 10th ed., ASM International, Met. Park, OH, 1990, vol. 2, pp. 3-757.
[3]Handbook Committee: Metals Handbook, ed. 10, vol. 2, ASM International, Met. Park, OH, 1990, pp. 913-42.
[4]A.L Greer, Nature, 366 (1993) 303.
[5]J.W. Yeh, S.K. Chen, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater, 6 No.5 (2004) 299-303.
[6]D.R. Gaskell, Introduction to the Thermodynamics Of Materials, 4th Edition, Taylor&Francis, P399-401.
[7]J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Metall. Mater. Trans. A, 35A (2004) 2533-2536.
[8]C.Y. Hsu, J.W. Yeh, S.K. Chen, and T.T. Shun, Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements, Metall. Mater. Trans. A, 35A (2004) 1465-1469.
[9]Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater., 10 No.6 (2008) 534-538.
[10]D.A. Porter, K.E. Easterling, Phase Transformation in Metals and Alloys, Chapman& Hall, New York (1981) 308–314.
[11]F.R. De Boer, in: FR de Boer, DG Pettifor (Eds.), Cohesion in Metals:Transition Metal Alloys, North-Holland, Amsterdam, (1989) 43–49.
[12]J.W. Yeh, Ann. Chim. Sci. Recent progress in high-entropy alloys, Mater. 31 (2006) 633–648.
[13]J.W. Yeh, The Development of High-Entropy Alloys, H.K. J. Eng. 27(2011) 1-18.
[14]C. Ng, S. Guo, J.H. Luan, S. Shi, C.T. Liu, Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy, Intermetallics, 31 (2012) 165-172.
[15]F.J. Wang, Z. Yong, G.L. Chen, H.A. Davies, Tensile and compressive mechanical behavior of a CoCrCuFeNiAl0.5 high entropy alloy, Int. J. Mod. Phys. B 2009, 23, 1254–1259.
[16]C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, and S.Y. Chang, Mechanical Performance of the AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements, Metall. Mater. Trans A, 36A (2005) 1263-1271.
[17]Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih, Microstructure and electrochemical properties of high entropy alloys-a comparison with type-304 stainless steel, Corros. Sci., 47(2005) 2257-2279.
[18]C.C. Tung , J.W. Yeh, T.T. Shun, S.K. Chen,Y.S. Huang, H.C. Chen, Materials Letters, 61 (2007) 1-5.
[19]J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, H.C. Cheng, Wear, 261 (2006) 513–519.
[20]S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, J. Banhart, Acta Materialia, 59 (2011) 182–190.
[21]S. Singh, N.Wanderka, K. Kiefer, K. Siemensmeyer, J. Banhart, Ultramicroscopy, 111 (2011) 619–622.
[22]Zhiyuan Liu, Sheng Guo, Xiongjun Liu, Jianchao Ye, Yong Yang, Xun-Li Wang, Ling Yang, Ke An, C.T. Liua, Scripta Materialia, 64 (2011) 868–871.
[23]C.T. Liua, Scripta Materialia, 64 (2011) 868–871.
[24]Xiaoyang Ye, Mingxing Ma, Yangxiaolu Cao, Wenjin Liu, Xiaohui Ye, Yu Gu, Physics Procedia, 12 (2011) 303–312.
[25]Min-Rui Chen, Su-Jien Lin, Jien-Wei Yeh, Swe-Kai, Chen,Yuan-Sheng Huang, and Ming-Hao Chuang, Metallurgical and MaterialsTransaction A, 37A, P.1363-1369 (2006)
[26]Metallurgical and MaterialsTransaction A, 37A, P.1363-1369 (2006)
[27]M. Chen, Y. Liu, Y.X. Li, X. Chen, Acta Metall. Sinica, 43 (2007)1020–1024.
[28]B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A, 357 (2004) 213–218.
[29]Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Applied Physics Letters, 90 (2007) 181904.
[30]Yih-Farn Kao, Ting-Jie Chen, Swe-Kai Chen, Jien-Wei Yeh, Journal of Alloys and Compounds, 488(2009) 57–64.
[31]C. Li, J.C. Li, M. Zhao, Q. Jiang, Journal of Alloys and Compounds, 504 (2010) 515–518.
[32]Y.J. Zhou, Y. Zhang, T.N. Kim, G.L. Chen , Materials Letters, 62 (2008) 2673–2676.
[33]K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi, Materials Science and Engineering A, 508 (2009) 214-219.
[34]T.T. Shun, Yu-Chin Du, Materials Science and Technology (MS&T), (2009) .
[35]T.T. Shun, Yu-Chin Du, Journal of Alloys and Compounds, 478 (2009) 269-272.
[36]T.T. Shun, Yu-Chin Du, Journal of Alloys and Compounds, 479 (2009) 157-160.
[37]T.T. Shun, C.H. Hung, C.F. Lee, Journal of Alloys and Compounds, 493 (2010) 105-109.
[38]T.T. Shun, C.H. Hung, C.F. Lee, Journal of Alloys and Compounds, 495 (2010) 55-58.
[39]F.R. De Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, Cohesion in Metals, North-Holland, Amsterdam, 1989.
[40]TT Shun, L.Y. Chang, M.H. Shiu, Materials Science and Engineering A, 556 (2012) 170-174.
[41]J.H. Pi, Y. Pan, L. Zhang, H. Zhang, J. Alloys Compd. 509 (2011) 5641-5645.
[42]X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen, Intermetallics, 15 (2007) 357-362.
[43]洪偉哲,碩士論文,逢甲大學材料科學與工程學系,中華民國105年6月.
[44]B.S. Li, Y.P. Wang, M.X. Ren, C. Yang, and H.Z. Fu, Materials Science and Engineering A, 498 (2008) 482-486.
[45]Y.P. Wang, B.S. Li, M.X. Ren, C.Yang, and H.Z. Fu, Materials Science and Engineering A, 491 (2008) 154-158.
[46]George E. Totten, Lin Xie, Kiyoshi Funatani, Handbook of Mechanical Alloy Design, Marcel Dekker, Inc, 2004.
[47]Metals Handbook, 10th Edition, vol 1, ASM International, pp.150 (1990)
[48]M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, J.W. Yeh, Criterion for Sigma Phase Formation in Cr- and V- Containing High-Entropy Alloys, Mater. Res. Let., (2013)207-212
[49]S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109, 103505(2011).
[50]A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference , heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., Vol. 46 (2005) 2817-2829.
[51]W.F. Smith﹐Structure and Properties of Engineering Alloys﹐2nd Edition﹐McGraw-Hill Inc. P.498-528 (1993)
[52]Chester T. Sims, Norman S. Stoloff, William C. Hagel, Superalloys II , Wiley. P.61-164 (1987)
[53]F.R. De Boer, in: FR de Boer, DG Pettifor (Eds.), Cohesion in Metals:Transition Metal Alloys, North-Holland, Amsterdam, 1989, pp. 43–49
[54]ASTM-E 8M-04
[55]Chester T. Sims, Norman S. Stoloff, William C. Hagel, Superalloys II , Wiley. 231-232 (1987)
[56]M. Mehl, D. Hicks, C. Toher, O. Levy, R.M. Hanson, G.L.W. Hart, and S. Curtarolo, Comput. Mater. Sci. 136 (Supp.), S1-S828 (2017).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔