|
1. 半導體製程技術導論(修訂二版) ),蕭宏 ,全華圖書 (2013) 2. Y.Shacham-Diamand, T.Osaka, and M. Datta Editors,Advanced nanoscale ULSI interconnects: fundamentals and applications, Springer (2009). 3. T. Gupta,Copper interconnect technology, Springer (2009). 4. M. He and T. M. Lu,Metal-Dielectric Interfaces in Gigascale Electronics, Springer (2012). 5. M. R. Baklanov, M. L. Green, and K. Maex, John Wiley& Sons,Dielectric Films for Advanced Microelectronics, Ltd. (2007). 6. Q. Ashton Acton Editor,Advances in Nanotechnology Research and Application, Scholarly Editions (2013 Edition). 7. Y.Shacham-Diamand, T. Osaka, and M. Datta Editors, Advanced nanoscale ULSI interconnects:fundamentals and applications, Springer (2009). 8. 陳錦山、黃獻慶、鄭義冠,泛談銅內接導線與低 k界電層製程與特性,真空技術,第十二 卷,第二期, 26-34頁(民 88 9. F.Fantini, J. R. Lloyd, I. M. De, and A. Scorzoni, Electromigration testing of integrated circuit interconnections, Mater. Eng., 40(3-4), pp. 207-221 (1998) 10. R. Rosenberg, D. C. Edelstein, C. K. Hu, K. P. Rodbell, Copper metallization for high performance silicon technology, Annu. Rev. Mater. Sci., 30, 229 (2000). 11. X. P. Qu, H. Lu, T. Peng, G. P. Ru, B. Z. Lu, Effects of preannealing on the diffusion barrier properties for ultrathin W-Si-N thin film, Thin Solid Films, 462, 67 (2004). 12. Y. J. Lee, B. S. Suh, M. S. Kwon, C. O. Park, Barrier properties and failure mechanism of Ta-Si-N thin films for Cu interconnection, J. Appl. Phys., 85, 1927 (1999). 13. M. T. Wang, Y. C. Lin and M. C. Chen, Barrier properties of very thin Ta and TaN layers against copper diffusion, J. Electrochem. Soc., 145(7), pp. 2538-2545 14. A. P. Singh, D. D. Gandhi, R. Moore, and G. Ramanath, Thermal stability of molecularly functionalized mesoporous silica thin films, J. Appl. Phys., 102, 044507 (2007). 15. A. Krishnamoorthy, K. Chanda, S. P. Murarka, G. Ramanath, and J. G. Ryan, Self-assembled near-zero-thickness molecular layers as diffusion barriers for Cu metallization, Appl. Phys. Lett., 78, pp. 2467−2469 (2001). 16. B. Singh, D. D. Gandhi, A. P. Singh, R. Moore, and G. Ramanath, Stabilization of mesoporous silica films using multiple organosilanes, Appl. Phys. Lett., 92, 113516 (2008) 17. B. Singh, S. Garg, A. Jain, R. Moore, and G. Ramanath,Effects of molecular functionalization sequence on mesoporous silica film properties, J. Vac. Sci. Technol. B, 29, 010602 (2011). 18. B. R. Murthy, W. M. Yee, A. Krishnamoorthy, R. Kumar, and D. C. Frye, Self-assembled monolayers as Cu diffusion barriers for ultralow-k dielectrics, Electrochem. Solid-State Lett.,9, F61–F63 (2006). 19. https://reurl.cc/vnjg8e 20. P. G. Ganesan, A. P. Singh, G. Ramanath, Diffusion barrier properties of carboxyl- and amine-terminated molecular, Appl. Phys. Lett., 85(4), 579 (2004). 21. Xin Liu, Qi Wang, Song Wu, Zengzeng Liu, Enhanced CVD of Copper Films on Self-Assembled Monolayers as Ultrathin Diffusion Barriers, J. Electrochem. Soc., 153(3), C142-C45 (2006). 22. AM Caro, S. Armani , O. Richard, G. Maes, G. Borghs, CM Whelan, and Y. Travaly, Bottom-Up Engineering of Subnanometer Copper Diffusion Barriers Using NH2-Derived Self-Assembled Monolayers, Adv. Funct. Mater., 20(7), pp. 1125–1131 (2010). 23. P. G. Ganesan, A. P. Singh, G. Ramanath, Diffusion barrier properties of carboxyl- and amine-terminated molecular, Appl. Phys. Lett., 85(4), 579 (2004). 24. T. Osaka and J. Sayama, A Challenge of New Materials for Next Generation’s Magnetic Recording, Electrochim. Acta,52,pp.2884 – 2890,(2007) 25. M. Yoshino, T. Masuda, T. Yokoshima, J. Sasano, Y. Shacham-Diamand, I. Matsuda, T. Osaka,Y. Hagiwara, and I. Sato, Electroless Diffusion Barrier Process Using SAM on Low-k Dielectrics, J. Electrochem. Soc., 154(3), D122−D125 (2007). 26. T. Asher, A. Inberg, E. Glickman, N. Fishelson, and Y. Shacham-Diamand, Formation and characterization of low resistivity sub-100 nm copper films deposited by electroless on SAM,Electrochim. Acta,54, 6053−6057 (2009). 27. L. K. Wu, K. Y. Chen, S. Y. Cheng, B. S. Lee, C. M. Shu, Thermal decomposition of hydrogen peroxide in the presence of sulfuric acid, J. Therm. Anal. Calorim., 93, 115 (2008). 28. C. M. Sulyma, C. M. Pettit, C. V. V. S. Surisetty, S. V. Babu, D. Roy, Electrochemical investigation of the roles of oxyanions in chemical–mechanical planarization of tantalumand tantalum nitride, J. Appl. Electrochem., 41, 561 (2011). 29. M. Chen, Y. Jin, X. H. Qu, Q. H. Jin, J. L. Zhao, Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment, Sens. Actuator B-Chem., 192, 399 (2014). 30. J. P. Zheng, B. K. Klug, D. Roy, Electrochemical investigation of surface reactions for chemical mechanical planarization of tantalum in oxalic acid solutions, J. Electrochem. Soc., 155, 341 (2008). 31. Mohammadian N, Faraji S, Sagar S, Das BC, Turner ML, Majewski LA. One-Volt, Solution-Processed Organic Transistors with Self-Assembled Monolayer-Ta2O5 Gate Dielectrics., Materials (Basel),12(16), 2563. (2019) 32. Renato V. Gonçalves,Pedro Migowski,Heberton Wender.,Ta2O5 Nanotubes Obtained by Anodization: Effect of Thermal Treatment on the Photocatalytic Activity for Hydrogen Production, J. Phys. Chem. C , 116, 26, 14022-14030,(2012) 33. Diamanti MV, Pisoni R, Cologni A, Brenna A, Corinto F, Pedeferri M. Anodic oxidation as a means to produce memristive films.,J Appl Biomater Funct Mater.,14(3):e290-5. ,(2016) 34. M. M. Momeni, M. Mirhosseini, M. Chavoshi ,A. Hakimizade, The effect of anodizing voltage on morphology and photocatalytic activity of tantalum oxide nanostructure, Journal of Materials Science: Materials in Electronics 27, p.p.3941–3947,(2016) 35. Shuilan Hu, Runling Peng, Yifan Li, Jiabi Chen, A review of developments in the preparation methods of tantalum pentoxide film, Materials Science, Engineering Published in Other Conferences, 8911,(2013) 36. Lide, David R., ed.. CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0487-3. (2006) 37. Turova N. Y., Korolev A. V.,Tchebukov D. E., Belokon A. I., Yanovsky A. I., Struchkov Y. T.,Tantalum(V) Alkoxides: Electrochemical Synthesis, Mass-Spectral Investigation and Oxoalkoxocomplexes., 15 (21),p.p. 3869–3880. (1996). 38. Bradley, Don C., Mehrotra, Ram C.,Rothwell, Ian P.,Singh, A.,Alkoxo and Aryloxo Derivatives of Metals. San Diego: Academic Press.,ISBN 978-0-08-048832-5. (2001) 39. Yagn Hai-ping,Yang Sheng-hai,Cai Ya-nan,Hou Guo-feng,Xia Jiao-yun, Tang Mo-tang, Electrochemical behaviors of tantalum in anhydrous ethanol containing hydrogen sulfate ions anhydrous ethanol containing hydrogen sulfate ions, Trans. Nonferrous Met. Soc. China ,21, p.p.179-184,(2011) 40. Andrea Zaffora, Deok-Yong Cho, Kug-Seung Lee, Francesco Di Quarto, Rainer Waser,Monica Santamaria, Ilia Valov, Electrochemical Tantalum Oxide for Resistive Switching Memories, Adv. Mater, 29, 1703357,(2017) 41. P. Bindra, J. Tweedie, Mechanisms of Electroless Metal Plating, J. Electrochem. Soc.,130. 1112 (1983). 42. 鄭郁勳,碩士論文,逢甲大學材料科學與工程學系,民鄭郁勳,碩士論文,逢甲大學材料科學與工程學系,民104。。 43. V.M. Dubin Y.Shacham-Diaman, B. Zhao, P. K. Vasudev, C. H. Ting, Selective and Blanket Electroless Copper Deposition for Ultralarge Scale Integration, J.Electrochem. Soc., 144, 898-908 (1997) 44. K Weiss ,S Riedel,S.E Schulz,M Schwerd,H Helneder,H Wendt,T Gessner, Development of different copper seed layers with respect to the copper electroplating process, Microelectron. Eng., 50, 433-440 (2000). 45. C. H. Lai, Y. C. Sung, S. J. Lin, S. Y. Chang, And J. W. Yeh, Atomic-Scale Observation On The Nucleation And Growth Of Displacement-Activated Palladium Catalysts And Electroless Copper Plating, Electrochem. Solid State Lett., 8, C114-C116 (2005). 46. V. M. Dubin, Electroless Ni-P Deposition On Silicon With Pd Activation, J. Electrochem. Soc., 139, 1289 (1992). 47. S. Y. Chang, C. W. Lin, H. H. Hsu, J. H. Fang S. J. Lin, Integrated electrochemical deposition of copper metallization for ultralarge-scale integrated circuits, J. Electrochem. Soc., 151, C81 (2004). 48. C. H. Lee, J. J. Kim, Effects of Pd activation on the self annealing of electroless copper deposition using Co(II)-ethylenediamine as a reducing agent, J. Vac. Sci. Technol. B., 23, p. 475 (2005). 49. Y. H. Zhang, T. T. Tan, S. Q. Yu And S. Y. Zhuang, Electroless Copper Deposition In The Photographic Gelatin Layer, J. Electrochem. Soc., 146, 1270-1272 (1999). 50. T. Osaka, N. Takano, T. Kurokawa, K. Ueno, Fabrication Of Electroless Nirep Barrier Layer On SiO2 Without Sputtered Seed Layer, Electrochem. Solid-State Lett., 5, 7-10, (2002). 51. J.P. Wightman, T.D. Lin, H.F. Webster, Surface chemical aspects of polymer/metal adhesion, Int. J. Adhes. Adhes., 133-137 (1992). 52. Abraham Ulman, Formation and Structure of Self-Assembled Monolayers, Chem. Rev., 96, 1533-1554 (1996). 53. A. E. Kaloyeros, E. Eisenbraun, Ultrathin Diffusion Barriers/liners for Giga Scale Copper Metallization, annurev.matsci., 30, 363-385 (2000). 54. A. V. Krasnoslobodtsev, S. N. Smirnov, Effect of Water on Silanization of Silica by Trimethoxysilanes, Langmuir. 18, 3181-3184 (2002). 55. T. Osaka, N.Takano, T. Kurokawa, T. Kaneko, K. Uenoc, Electroless Nickel Ternary Alloy Deposition on SiO2 for Application to Diffusion Barrier Layer in Copper Interconnect Technology, J. Electrochem. Soc., 149, 573-578 (2002). 56. http://www.mtl.kyoto-u.ac.jp/english/laboratory/nanoscopic/nanoscopic.htm 57. Sellers et al., J. Am. Chem. Soc., 1993 58. Daniel, S., Chaudhury, M. K., and Chen, J. C., 2001, “Fast Drop Movements Resulting from the Phase Change on a Gradient Surface,” Science, Vol. 291, 633-636. 59. Fang, X., Li, B., Petersen, E., Seo, Y. S., Samuilov, V. A., Chen, Y., Sokolov,J. C., Shew, C. Y., and Rafailovich, M. H., 2006, “Drying of DNA Droplets,”Langmuir, 22, 6308-6312 (2006). 60. H.Y. Wong, N.F. Mohd Shukor, N. Amin, Prospective development in diffusion barrier layers for copper metallization in LSI, Microelectron. J., 38, 777-782 (2007). 61. T. Asher, A. Inberg, E. Glickman, N. Fishelson, Y. Shacham-Diamand, Formation characterization of low resistivity sub-100 nm copper films deposited by electroless on SAM, Electrochim. Acta, 54, 6053 (2009). 62. S. T. Chen, G. S. Chen, C. H. Huang, A vacuum plasma surface pretreatment for refining seeding of Co in electroless copper plating, Thin Solid Films., 518, 4261-4265 (2010). 63. C.S. Hsu, S.T. Chen, Y.S. Tang, G.S. Chen, Strengthening electroless Co-based barrier layers by minor refractory-metal doping, Thin Solid Films, 517, 1274-1278 (2008). 64. G. S. Chen, Y. S. Tang, S. T. Chen, T. J. Yang, Electroless deposition of ultrathin Co-B based barriers for Cu metallization using an innovative seeding technique, Electrochem. Solid-State Lett., 9, 141 (2006). 65. G.S. Chen, S.T. Chen, Characterization of Ultrathin Electroless Barriers Grown by Self-Aligned Deposition on Silicon-Based Dielectric Films, J. Electrochem. Soc., 151, 99-105 (2004). 66. S. T. Chen, G. S. Chen, T. J. Yang, T. C. Chang, W. H. Yang, The Synergistic Effect of N2/H2 Gases in the Plasma Passivation of Siloxane-Based Low-k Polymer Films, Electrochem. Solid-State Lett., 6, 4-7 (2003). 67. S. T. Chen, G. S. Chen, Nanoseeding via dual surface modification of alkyl monolayer for site-controlled electroless metallization, Langmuir, 27, 12143 (2011). 68. T. Komeda, K. Namba, and Y. Nishioka, Self-assembled-monolayer film islands as a self-patterned-mask for SiO2 thickness measurement with atomic force microscopy, Appl. Phys. 70, 3398 (1997). 69. G.S. Chen, D.Y. Wu, S.T. Chen, Y.L. Cheng, J.S. Fang, T.M. Yang, Enhancement of Seeding and Electroless Cu Plating on TaN Barrier Layers: The Role of Plasma Functionalized Self-Assembled Monolayers, Journal of The Electrochemical Society,163(9) D463-D468 (2016). 70. F. J. Himpsel, F. R. Mcfeely, A. Taleb-Ibrahimi, J. A. Yarmoff, The Physics And Chemistry Of Sio2 And The Si-Sio2 Interface, C. R. Helms And B. E. Deal, Editors, 219, Plenum Press, New York (1988). 71. Jung-Chih Tsao, Chuan-Pu Liu, Hsin-Chiao Fang, Ying-Lang Wang, How tantalum proceeds phase change on tantalum nitride underlayer with sequential Ar plasma treatment, Materials Chemistry and Physics, 137,689-693,(2013) 72. 楊子明,碩士論文,逢甲大學材料科學與工程學系,民楊子明,碩士論文,逢甲大學材料科學與工程學系,民105。。 73. 陶仁杰,碩士論文,逢甲大學材料科學與工程學系,民陶仁杰,碩士論文,逢甲大學材料科學與工程學系,民106。。 74. 逢甲大學材料基礎實驗課程講義逢甲大學材料基礎實驗課程講義 75. 電化學工程原理(初版),吳永福,五南圖書(2018) 76. 張文鴻,碩士論文,逢甲大學材料科學與工程學系,民張文鴻,碩士論文,逢甲大學材料科學與工程學系,民106。。 77. 陳松德、唐英森、李健志、陳錦山,創新性無電鍍沉積超薄鈷基阻障層在銅金屬化之應用,真空科技 十九卷二期 (147). 78. G.S. Chen, S.T. Chen, Y.L. Lu.. A new seeding and electroless approachto alloying, direct patterning, and self-forming barriers for Cu thin-film nanostructures, Electrochem. Commun., 12, 1483-1486. (2010) 79. 吳定曄,碩士論文,逢甲大學材料科學與工程學系,民吳定曄,碩士論文,逢甲大學材料科學與工程學系,民103。。 80. International Roadmap for Devices and Systems, EMERGING RESEARCH MATERIALS (2017 Edition); https://irds.ieee.org/roadmap-2017. 81. T. Gupta, Springer,Copper interconnect technology, (2009). 82. K. Kazuo, N. A. Rohan, P. B. Dale, and Y. Masayuki, Copper Electrodeposition for Nanofabrication of Electronics Devices,Springer (2013). 83. James Guo Sheng Moo,Zaenal Awaludin,Takeyoshi Okajima,Takeo Ohsaka, An XPS depth-profile study on electrochemically deposited TaOx, Journal of Solid State Electrochemistry,December,17(12),3115–3123(2013) 84. Department of Chemistry, Center for Adhesive and Sealant Science, Virginia Polytechnic Institute and State University,Blacksburg, SURFACE AND INTERFACE ANALYSIS, 26, 549--564 (1998) 85. Randy De Palma,Wim Laureyn,Filip Frederix, Kristien Bonroy,Jean-Jaques Pireaux,§ Gustaaf Borghs, Guido Maes, Formation of Dense Self-assembled Monolayers of (n-Decyl)trichlorosilanes on Ta/Ta2O5, American Chemical Society, July(23), 443-451(2007) 86. J.A. Wilks, N. P. Magtoto, J. A. Kelber, V. Arunachalam, Interfacial reactions during sputter deposition of Ta and TaN films on organosilicate glass: XPS and TEM results, Appl. Surf. Sci. 253, 6176–6184 (2007). 87. W.K. Han, G. H. Hwang, S. J. Hong, H. H. An, C. S. Yoon, J. H. Kim, M. J. Lee, G. Hong, K. S. Park, S. G. Kang, Superconformal filling of 41 nm trenches with Cu electroless deposition on Au-activated self-assembled monolayer, Mater. Chem. Phys., 123, 401 (2010). 88. Joong Ho Moon , Jin Ho Kim , Ki Jeong Kim, Tai Hee Kang, Bongsoo Kim, Chan Ho Kim, Jong Hoon Hahn, Joon Won Park, Absolute Surface Density of the Amine Group of the Aminosilylated Thin Layers: Ultraviolet−Visible Spectroscopy, Second Harmonic Generation, and Synchrotron-Radiation Photoelectron Spectroscopy Study ., Langmuir, 13(16), 4305–4310 (1997). 89. C. Önneby, C. G. Pantano, Silicon oxycarbide formation on SiC surfaces and at the SiC/SiO2SiO2 interface JVSTA 15, 1597-1602 (1997). 90. Licheng M. Hana, Ji-Sheng Panb, Shou Mian Chena, N. Balasubramaniana, Jianou Shic, Ling Soon Wongc, P. D. Fooa, Characterization of Carbon-Doped SiO2 Low k Thin Films Preparation by Plasma-Enhanced Chemical Vapor Deposition from Tetramethylsilane, Journal of The Electrochemical Society, 148(7), F148-F153 (2001). 91. G. Jakša, B. Štefane, J. Kovač, XPS and AFM characterization of aminosilanes with different numbers of bonding sites on a silicon wafer., Surf. Interface Anal., 45, 1709-1713 (2013). 92. JaeyeongHeo, Hyeong JoonKim, JeongHoon Han, Jong-Won Shon, The structures of low dielectric constant SiOC thin films prepared by direct and remote plasma enhanced chemical vapor deposition TSF, 515(07), 5035-5039 (2007). 93. An Soo Jung, R. Navamathavan, Kwang Man Lee, Chi Kyu Choi, Plasma characteristics of low-k SiOC(–H) films prepared by using plasma enhanced chemical vapor deposition from DMDMS/O2 precursors, Surface and Coatings Technology, 202(22-23), 5693-5696 (2008). 94. A. U. Alam, M. M. R. Howlader, M. J. Deen, Oxygen Plasma and Humidity Dependent Surface Analysis of Silicon, Silicon Dioxide and Glass for Direct Wafer Bonding, Journal of Solid State Science and Technology, 2(12), 515-523 (2013). 95. Fengxiang Zhang, M. P. Srinivasan, Self-Assembled Molecular Films of Aminosilanes and Their Immobilization Capacities. Langmuir, 20, 2309-2314 (2004). 96. Xiaoyan Song, Jin Zhai, Yilin Wang, Lei Jiang, Self-assembly of amino-functionalized monolayers on silicon surfaces and preparation of superhydrophobic surfaces based on alkanoic acid dual layers and surface roughening, JCIS 298, 267-273 (2006). 97. Cai Chu-jiang, Shen Zhi-gang, Xing Yu-shan, Ma Shu-lin, Surface topography and character of γ-aminopropyltriethoxysilane and dodecyltrimethoxysilane films adsorbed on the silicon dioxide substrate via vapour phase deposition, J. Phys. D, 39, 4829-4837 (2006). 98. K. Bierbaum, M. Kinzler, Ch. Woell, M. Grunze, G. Haehner, S. Heid, F. Effenberger, A Near Edge X-ray Absorption Fine Structure Spectroscopy and X-ray Photoelectron Spectroscopy Study of the Film Properties of Self-Assembled Monolayers of Organosilanes on Oxidized Si(100) .Langmuir, 11(2), 512-518 (1995). 99. Janildo L. Magalhaes, Leonardo M. Moreira, Ubirajara P. Rodrigues-Filho, Martha J. Giz, Surface chemistry of the iron tetraazamacrocycle on theaminopropyl-modified surface of oxidized n-Si(100) by AFM and XPS. Surf. Interface Anal., 33, 293-298 (2002). 100. E. Metwalli, D. Haines, O. Becker, S. Conzone, C.G. Pantano el., surface characterizations of mono-, di-, and tri-aminosilane treated glass substrates, Journal of Colloid and Interface Science, 298, 825-831 (2006). 101. S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi el., Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates, JCIS, 321, 235-241 (2008).
|