(3.238.186.43) 您好!臺灣時間:2021/02/26 11:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:卓安祺
研究生(外文):CHO, AN-CHI
論文名稱:電化學輔助表面改質超薄鉭膜之自組裝單層 暨無電鍍銅膜生長與阻障性評估
論文名稱(外文):Evaluating the Barrier Properties of Self-Assembled-Monolayers and Electroless Plated Copper on Tantalum Ultrathin Film by Electrochemistry Assisted Surface Modification
指導教授:陳錦山
指導教授(外文):CHEN, GIIN-SHAN
口試委員:陳松德眭曉林
口試委員(外文):CHEN,SUNG-TESUI, SIAO-LIN
口試日期:2020-01-03
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:92
中文關鍵詞:擴散阻障層陽極處理自組裝單層無電鍍銅
外文關鍵詞:Diffusion barrierAnodizing treatmentSelf-Assembled-MonolayersElectroless copper
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鉭基(Ta-base)薄膜因具有優質的對銅擴散的阻障特性,至今仍是業界銅製程的標準化阻障層材料,唯其使用厚度會隨日益微縮的介電溝槽而同步需下降,以保留足夠的空間進行後續之電化學銅導線填充。但鉭基阻障層的超薄化將會導致其阻障性降低以及薄膜連續性不佳,從而衍生嚴重的銅導線系統可靠度問題。本論文藉由探討超薄鉭膜(膜厚< 2 nm)電化學輔助表面改質,生長多功能性(兼具阻障、附著強化與晶種捕獲)自組裝單層APTMS-SAM,利用雙重阻障結構複合強化銅擴散阻障性能。
本論文主要分成兩部分:第一部分,藉由Si/Ta(膜厚:20 nm)基材試片,以無水乙醇陽極氧化溶液透過循環伏安曲線觀察其陽極氧化行為,並添加少量水以及適當的電壓調控促進陽極氧化反應進行,將鉭阻障層經陽極處理使表面生成帶羥基(-OH)的親水性鈍化層Ta2O5表面,進一步透過表面鍵結分析、片電阻變化以及表面形貌與粗糙度觀察,取得最適化表面改質參數。隨後將改質完成的試片進行矽烷化處理,透過水接觸角變化與表面鍵結分析,可得知經過120 分鐘的生長即可使表面產生垂直有序的APTMS-SAM。經過一系列的晶種吸附/還原過程,並分別進行短與長時間的無電鍍銅析鍍,藉由SEM影像可得知其晶種密度極高,銅膜連續且平整無明顯的孔洞缺陷,並利用薄膜附著性量測分析,可以得知經適當陽極處理的「Si/Ta(含水氧化)/SAM/Cu」試片之附著性優於未經處理的「Si/Ta/SAM/Cu」試片。
後續將第一部份實驗結果導入「Si/Ta(膜厚:2 nm)」製程,探討陽極處理對超薄鉭膜阻障層之陽極氧化行為變化,透過表面片電阻、鍵結、形貌與微結構變化分析,取得最適化表面改質參數,並經過自組裝單層生長與一系列的晶種吸附/還原過程,沉積附著性良好的無電鍍銅膜。使用相對片電阻變化量測擴散溫度的臨界值以及SEM表面形貌觀察,可得知經最適化陽極處理的「Si/Ta(陽極氧化)/SAM/Cu」之阻障效果優於「Si/Ta /Cu」且臨界溫度亦由425°C提升至500°C。

Tantalum-base film has superior barrier property, and thus will be still the standard barrier material for the manufacturing of Cu interconnects. However, the thickness of Ta-base barrier layers has to be limited to 2 nm or less in order to leave minimized trenches (30-50 nm in width) with sufficient space for Cu-filling. Such ultrathin Tabase has weakened barrier capacity and discontinuous film structure, thus rendering difficulty in Cu-filling. In this study, a Versatility (both barrier, adhesion enhancement and seed capture) Self-Assembled-Monolayers APTMS-SAM on tantalum ultrathin film (film thickness <2 nm) by electrochemistry assisted surface modification. The double barrier structure is used to strengthen the copper diffusion barrier properties.
This study mainly contains two parts: In the first part, Si/Ta (film thickness: 20 nm) substrate test piece was used to observe the anodic oxidation reaction with a cyclic voltammetry curve based on an ethanol solution. A small amount of H2O is added with appropriate voltage regulation applied to promote the anodic oxidation reaction. As the Ta barrier layer is anodized, a hydrophilic passivation layer Ta2O5 with hydroxyl (-OH) is produced on the surface thereof. Further through surface bonding analysis, sheet resistance change, and surface morphology and roughness observation, the optimal surface modification parameters may be obtained. The modified Tantalum-base film was subjected to a silylation treatment. Through the change of water contact angle and surface bonding analysis, it was found that after 120 minutes of growth, vertically ordered APTMS-SAM can be produced on the surface. After a series of seed adsorption/reduction processes, short-term (5s) and long-term (30s) electroless copper precipitation, the SEM image shows that the seed density is extremely high, and the copper film is continuous and flat without obvious hole defects. Through Test of Adhesion, the adhesion of the anodized Si/Ta*/SAM/Cu specimen is preferably greater than that of the untreated Si/Ta/SAM/Cu specimen.
Subsequently, (in the second part,) the experimental results of the first part are introduced into the "Si/Ta (film thickness: 2 nm)" process to discuss the oxidation reaction of ultra-thin Tantalum-base film against anodic treatment. After self-assembled monolayer growth and a series of adsorption/reduction processes, an electroless copper film with good adhesion is deposited. By sheet resistance and SEM top view, it is taught that the modified Si/Ta*/SAM/Cu specimen was a better diffusion barrier than Si/Ta/Cu specimen, and critical temperature preferably increase from 425°C to 500°C.

摘 要........3
Abstract........4
目 錄........6
圖目錄........8
表目錄........11
第一章 緒論........12
1.1 前言........12
1.2 研究動機與目的........13
第二章文獻回顧........14
2.1金屬擴散阻障層之發展........14
2.2鉭的陽極氧化處理........16
2.3無電鍍銅金屬化製程........18
2.4自組裝單層應用........21
第三章 實驗步驟與分析原理........24
3.1 實驗整體製作流程........24
3.2 個別步驟說明........27
3.3 TEM平面試片製備........34
3.4實驗設備與分析儀器介紹........36
第四章 結果與討論........42
4.1 20 nm鉭薄膜陽極處理製程參數評估........42
4.1.1 電解質溶液之水含量對陽極氧化之效應―循環伏安分析........42
4.1.2 處理時間對試片之片電阻變化關係........45
4.2 鉭薄膜之矽烷化行為陽極氧化效益........51
4.3 無電鍍銅膜沉積及機械性質(附著強度)評估........56
4.3.1 晶種吸附與無電鍍銅膜沉積........56
4.3.2 銅膜附著強度評估........59
4.4 2 nm超薄鉭膜陽極處理效應評估........61
4.4.1 處理時間對試片之片電阻與表面形貌變化........61
4.4.2 陽極氧化之微結構與表面鍵解變化........64
4.4.3 陽極處理對鉭膜之阻障性能改變效應........68
4.5 陽極氧化對超薄鉭膜之矽烷化改善效益........71
4.6銅膜沉積與機械性質(附著強度)及擴散阻障評估........75
4.6.1 陽極氧化之銅膜沉積差異........75
4.6.2 銅膜附著強度與阻障性能評估........75
第五章 結論........81
參考文獻........83

1. 半導體製程技術導論(修訂二版) ),蕭宏 ,全華圖書 (2013)
2. Y.Shacham-Diamand, T.Osaka, and M. Datta Editors,Advanced nanoscale ULSI interconnects: fundamentals and applications, Springer (2009).
3. T. Gupta,Copper interconnect technology, Springer (2009).
4. M. He and T. M. Lu,Metal-Dielectric Interfaces in Gigascale Electronics, Springer (2012).
5. M. R. Baklanov, M. L. Green, and K. Maex, John Wiley& Sons,Dielectric Films for Advanced Microelectronics, Ltd. (2007).
6. Q. Ashton Acton Editor,Advances in Nanotechnology Research and Application, Scholarly Editions (2013 Edition).
7. Y.Shacham-Diamand, T. Osaka, and M. Datta Editors, Advanced nanoscale ULSI interconnects:fundamentals and applications, Springer (2009).
8. 陳錦山、黃獻慶、鄭義冠,泛談銅內接導線與低 k界電層製程與特性,真空技術,第十二
卷,第二期, 26-34頁(民 88
9. F.Fantini, J. R. Lloyd, I. M. De, and A. Scorzoni, Electromigration testing of integrated circuit interconnections, Mater. Eng., 40(3-4), pp. 207-221 (1998)
10. R. Rosenberg, D. C. Edelstein, C. K. Hu, K. P. Rodbell, Copper metallization for high performance silicon technology, Annu. Rev. Mater. Sci., 30, 229 (2000).
11. X. P. Qu, H. Lu, T. Peng, G. P. Ru, B. Z. Lu, Effects of preannealing on the diffusion barrier properties for ultrathin W-Si-N thin film, Thin Solid Films, 462, 67 (2004).
12. Y. J. Lee, B. S. Suh, M. S. Kwon, C. O. Park, Barrier properties and failure mechanism of Ta-Si-N thin films for Cu interconnection, J. Appl. Phys., 85, 1927 (1999).
13. M. T. Wang, Y. C. Lin and M. C. Chen, Barrier properties of very thin Ta and TaN layers against copper diffusion, J. Electrochem. Soc., 145(7), pp. 2538-2545
14. A. P. Singh, D. D. Gandhi, R. Moore, and G. Ramanath, Thermal stability of molecularly functionalized mesoporous silica thin films, J. Appl. Phys., 102, 044507 (2007).
15. A. Krishnamoorthy, K. Chanda, S. P. Murarka, G. Ramanath, and J. G. Ryan, Self-assembled near-zero-thickness molecular layers as diffusion barriers for Cu metallization, Appl. Phys. Lett., 78, pp. 2467−2469 (2001).
16. B. Singh, D. D. Gandhi, A. P. Singh, R. Moore, and G. Ramanath, Stabilization of mesoporous silica films using multiple organosilanes, Appl. Phys. Lett., 92, 113516 (2008)
17. B. Singh, S. Garg, A. Jain, R. Moore, and G. Ramanath,Effects of molecular functionalization sequence on mesoporous silica film properties, J. Vac. Sci. Technol. B, 29, 010602 (2011).
18. B. R. Murthy, W. M. Yee, A. Krishnamoorthy, R. Kumar, and D. C. Frye, Self-assembled monolayers as Cu diffusion barriers for ultralow-k dielectrics, Electrochem. Solid-State Lett.,9, F61–F63 (2006).
19. https://reurl.cc/vnjg8e
20. P. G. Ganesan, A. P. Singh, G. Ramanath, Diffusion barrier properties of carboxyl- and amine-terminated molecular, Appl. Phys. Lett., 85(4), 579 (2004).
21. Xin Liu, Qi Wang, Song Wu, Zengzeng Liu, Enhanced CVD of Copper Films on Self-Assembled Monolayers as Ultrathin Diffusion Barriers, J. Electrochem. Soc., 153(3), C142-C45 (2006).
22. AM Caro, S. Armani , O. Richard, G. Maes, G. Borghs, CM Whelan, and Y. Travaly, Bottom-Up Engineering of Subnanometer Copper Diffusion Barriers Using NH2-Derived Self-Assembled Monolayers, Adv. Funct. Mater., 20(7), pp. 1125–1131 (2010).
23. P. G. Ganesan, A. P. Singh, G. Ramanath, Diffusion barrier properties of carboxyl- and amine-terminated molecular, Appl. Phys. Lett., 85(4), 579 (2004).
24. T. Osaka and J. Sayama, A Challenge of New Materials for Next Generation’s Magnetic Recording, Electrochim. Acta,52,pp.2884 – 2890,(2007)
25. M. Yoshino, T. Masuda, T. Yokoshima, J. Sasano, Y. Shacham-Diamand, I. Matsuda, T. Osaka,Y. Hagiwara, and I. Sato, Electroless Diffusion Barrier Process Using SAM on Low-k Dielectrics, J. Electrochem. Soc., 154(3), D122−D125 (2007).
26. T. Asher, A. Inberg, E. Glickman, N. Fishelson, and Y. Shacham-Diamand, Formation and characterization of low resistivity sub-100 nm copper films deposited by electroless on SAM,Electrochim. Acta,54, 6053−6057 (2009).
27. L. K. Wu, K. Y. Chen, S. Y. Cheng, B. S. Lee, C. M. Shu, Thermal decomposition of hydrogen peroxide in the presence of sulfuric acid, J. Therm. Anal. Calorim., 93, 115 (2008).
28. C. M. Sulyma, C. M. Pettit, C. V. V. S. Surisetty, S. V. Babu, D. Roy, Electrochemical investigation of the roles of oxyanions in chemical–mechanical planarization of tantalumand tantalum nitride, J. Appl. Electrochem., 41, 561 (2011).
29. M. Chen, Y. Jin, X. H. Qu, Q. H. Jin, J. L. Zhao, Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment, Sens. Actuator B-Chem., 192, 399 (2014).
30. J. P. Zheng, B. K. Klug, D. Roy, Electrochemical investigation of surface reactions for chemical mechanical planarization of tantalum in oxalic acid solutions, J. Electrochem. Soc., 155, 341 (2008).
31. Mohammadian N, Faraji S, Sagar S, Das BC, Turner ML, Majewski LA. One-Volt, Solution-Processed Organic Transistors with Self-Assembled Monolayer-Ta2O5 Gate Dielectrics., Materials (Basel),12(16), 2563. (2019)
32. Renato V. Gonçalves,Pedro Migowski,Heberton Wender.,Ta2O5 Nanotubes Obtained by Anodization: Effect of Thermal Treatment on the Photocatalytic Activity for Hydrogen Production, J. Phys. Chem. C , 116, 26, 14022-14030,(2012)
33. Diamanti MV, Pisoni R, Cologni A, Brenna A, Corinto F, Pedeferri M. Anodic oxidation as a means to produce memristive films.,J Appl Biomater Funct Mater.,14(3):e290-5. ,(2016)
34. M. M. Momeni, M. Mirhosseini, M. Chavoshi ,A. Hakimizade, The effect of anodizing voltage on morphology and photocatalytic activity of tantalum oxide nanostructure, Journal of Materials Science: Materials in Electronics 27, p.p.3941–3947,(2016)
35. Shuilan Hu, Runling Peng, Yifan Li, Jiabi Chen, A review of developments in the preparation methods of tantalum pentoxide film, Materials Science, Engineering Published in Other Conferences, 8911,(2013)
36. Lide, David R., ed.. CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0487-3. (2006)
37. Turova N. Y., Korolev A. V.,Tchebukov D. E., Belokon A. I., Yanovsky A. I., Struchkov Y. T.,Tantalum(V) Alkoxides: Electrochemical Synthesis, Mass-Spectral Investigation and Oxoalkoxocomplexes., 15 (21),p.p. 3869–3880. (1996).
38. Bradley, Don C., Mehrotra, Ram C.,Rothwell, Ian P.,Singh, A.,Alkoxo and Aryloxo Derivatives of Metals. San Diego: Academic Press.,ISBN 978-0-08-048832-5. (2001)
39. Yagn Hai-ping,Yang Sheng-hai,Cai Ya-nan,Hou Guo-feng,Xia Jiao-yun, Tang Mo-tang, Electrochemical behaviors of tantalum in anhydrous ethanol containing hydrogen sulfate ions anhydrous ethanol containing hydrogen sulfate ions, Trans. Nonferrous Met. Soc. China ,21, p.p.179-184,(2011)
40. Andrea Zaffora, Deok-Yong Cho, Kug-Seung Lee, Francesco Di Quarto, Rainer Waser,Monica Santamaria, Ilia Valov, Electrochemical Tantalum Oxide for Resistive Switching Memories, Adv. Mater, 29, 1703357,(2017)
41. P. Bindra, J. Tweedie, Mechanisms of Electroless Metal Plating, J. Electrochem. Soc.,130. 1112 (1983).
42. 鄭郁勳,碩士論文,逢甲大學材料科學與工程學系,民鄭郁勳,碩士論文,逢甲大學材料科學與工程學系,民104。。
43. V.M. Dubin Y.Shacham-Diaman, B. Zhao, P. K. Vasudev, C. H. Ting, Selective and Blanket Electroless Copper Deposition for Ultralarge Scale Integration, J.Electrochem. Soc., 144, 898-908 (1997)
44. K Weiss ,S Riedel,S.E Schulz,M Schwerd,H Helneder,H Wendt,T Gessner, Development of different copper seed layers with respect to the copper electroplating process, Microelectron. Eng., 50, 433-440 (2000).
45. C. H. Lai, Y. C. Sung, S. J. Lin, S. Y. Chang, And J. W. Yeh, Atomic-Scale Observation On The Nucleation And Growth Of Displacement-Activated Palladium Catalysts And Electroless Copper Plating, Electrochem. Solid State Lett., 8, C114-C116 (2005).
46. V. M. Dubin, Electroless Ni-P Deposition On Silicon With Pd Activation, J. Electrochem. Soc., 139, 1289 (1992).
47. S. Y. Chang, C. W. Lin, H. H. Hsu, J. H. Fang S. J. Lin, Integrated electrochemical deposition of copper metallization for ultralarge-scale integrated circuits, J. Electrochem. Soc., 151, C81 (2004).
48. C. H. Lee, J. J. Kim, Effects of Pd activation on the self annealing of electroless copper deposition using Co(II)-ethylenediamine as a reducing agent, J. Vac. Sci. Technol. B., 23, p. 475 (2005).
49. Y. H. Zhang, T. T. Tan, S. Q. Yu And S. Y. Zhuang, Electroless Copper Deposition In The Photographic Gelatin Layer, J. Electrochem. Soc., 146, 1270-1272 (1999).
50. T. Osaka, N. Takano, T. Kurokawa, K. Ueno, Fabrication Of Electroless Nirep Barrier Layer On SiO2 Without Sputtered Seed Layer, Electrochem. Solid-State Lett., 5, 7-10, (2002).
51. J.P. Wightman, T.D. Lin, H.F. Webster, Surface chemical aspects of polymer/metal adhesion, Int. J. Adhes. Adhes., 133-137 (1992).
52. Abraham Ulman, Formation and Structure of Self-Assembled Monolayers, Chem. Rev., 96, 1533-1554 (1996).
53. A. E. Kaloyeros, E. Eisenbraun, Ultrathin Diffusion Barriers/liners for Giga Scale Copper Metallization, annurev.matsci., 30, 363-385 (2000).
54. A. V. Krasnoslobodtsev, S. N. Smirnov, Effect of Water on Silanization of Silica by Trimethoxysilanes, Langmuir. 18, 3181-3184 (2002).
55. T. Osaka, N.Takano, T. Kurokawa, T. Kaneko, K. Uenoc, Electroless Nickel Ternary Alloy Deposition on SiO2 for Application to Diffusion Barrier Layer in Copper Interconnect Technology, J. Electrochem. Soc., 149, 573-578 (2002).
56. http://www.mtl.kyoto-u.ac.jp/english/laboratory/nanoscopic/nanoscopic.htm
57. Sellers et al., J. Am. Chem. Soc., 1993
58. Daniel, S., Chaudhury, M. K., and Chen, J. C., 2001, “Fast Drop Movements Resulting from the Phase Change on a Gradient Surface,” Science, Vol. 291, 633-636.
59. Fang, X., Li, B., Petersen, E., Seo, Y. S., Samuilov, V. A., Chen, Y., Sokolov,J. C., Shew, C. Y., and Rafailovich, M. H., 2006, “Drying of DNA Droplets,”Langmuir, 22, 6308-6312 (2006).
60. H.Y. Wong, N.F. Mohd Shukor, N. Amin, Prospective development in diffusion barrier layers for copper metallization in LSI, Microelectron. J., 38, 777-782 (2007).
61. T. Asher, A. Inberg, E. Glickman, N. Fishelson, Y. Shacham-Diamand, Formation characterization of low resistivity sub-100 nm copper films deposited by electroless on SAM, Electrochim. Acta, 54, 6053 (2009).
62. S. T. Chen, G. S. Chen, C. H. Huang, A vacuum plasma surface pretreatment for refining seeding of Co in electroless copper plating, Thin Solid Films., 518, 4261-4265 (2010).
63. C.S. Hsu, S.T. Chen, Y.S. Tang, G.S. Chen, Strengthening electroless Co-based barrier layers by minor refractory-metal doping, Thin Solid Films, 517, 1274-1278 (2008).
64. G. S. Chen, Y. S. Tang, S. T. Chen, T. J. Yang, Electroless deposition of ultrathin Co-B based barriers for Cu metallization using an innovative seeding technique, Electrochem. Solid-State Lett., 9, 141 (2006).
65. G.S. Chen, S.T. Chen, Characterization of Ultrathin Electroless Barriers Grown by Self-Aligned Deposition on Silicon-Based Dielectric Films, J. Electrochem. Soc., 151, 99-105 (2004).
66. S. T. Chen, G. S. Chen, T. J. Yang, T. C. Chang, W. H. Yang, The Synergistic Effect of N2/H2 Gases in the Plasma Passivation of Siloxane-Based Low-k Polymer Films, Electrochem. Solid-State Lett., 6, 4-7 (2003).
67. S. T. Chen, G. S. Chen, Nanoseeding via dual surface modification of alkyl monolayer for site-controlled electroless metallization, Langmuir, 27, 12143 (2011).
68. T. Komeda, K. Namba, and Y. Nishioka, Self-assembled-monolayer film islands as a self-patterned-mask for SiO2 thickness measurement with atomic force microscopy, Appl. Phys. 70, 3398 (1997).
69. G.S. Chen, D.Y. Wu, S.T. Chen, Y.L. Cheng, J.S. Fang, T.M. Yang, Enhancement of Seeding and Electroless Cu Plating on TaN Barrier Layers: The Role of Plasma Functionalized Self-Assembled Monolayers, Journal of The Electrochemical Society,163(9) D463-D468 (2016).
70. F. J. Himpsel, F. R. Mcfeely, A. Taleb-Ibrahimi, J. A. Yarmoff, The Physics And Chemistry Of Sio2 And The Si-Sio2 Interface, C. R. Helms And B. E. Deal, Editors, 219, Plenum Press, New York (1988).
71. Jung-Chih Tsao, Chuan-Pu Liu, Hsin-Chiao Fang, Ying-Lang Wang, How tantalum proceeds phase change on tantalum nitride underlayer with sequential Ar plasma treatment, Materials Chemistry and Physics, 137,689-693,(2013)
72. 楊子明,碩士論文,逢甲大學材料科學與工程學系,民楊子明,碩士論文,逢甲大學材料科學與工程學系,民105。。
73. 陶仁杰,碩士論文,逢甲大學材料科學與工程學系,民陶仁杰,碩士論文,逢甲大學材料科學與工程學系,民106。。
74. 逢甲大學材料基礎實驗課程講義逢甲大學材料基礎實驗課程講義
75. 電化學工程原理(初版),吳永福,五南圖書(2018)
76. 張文鴻,碩士論文,逢甲大學材料科學與工程學系,民張文鴻,碩士論文,逢甲大學材料科學與工程學系,民106。。
77. 陳松德、唐英森、李健志、陳錦山,創新性無電鍍沉積超薄鈷基阻障層在銅金屬化之應用,真空科技 十九卷二期 (147).
78. G.S. Chen, S.T. Chen, Y.L. Lu.. A new seeding and electroless approachto alloying, direct patterning, and self-forming barriers for Cu thin-film nanostructures, Electrochem. Commun., 12, 1483-1486. (2010)
79. 吳定曄,碩士論文,逢甲大學材料科學與工程學系,民吳定曄,碩士論文,逢甲大學材料科學與工程學系,民103。。
80. International Roadmap for Devices and Systems, EMERGING RESEARCH MATERIALS (2017 Edition); https://irds.ieee.org/roadmap-2017.
81. T. Gupta, Springer,Copper interconnect technology, (2009).
82. K. Kazuo, N. A. Rohan, P. B. Dale, and Y. Masayuki, Copper Electrodeposition for Nanofabrication of Electronics Devices,Springer (2013).
83. James Guo Sheng Moo,Zaenal Awaludin,Takeyoshi Okajima,Takeo Ohsaka, An XPS depth-profile study on electrochemically deposited TaOx, Journal of Solid State Electrochemistry,December,17(12),3115–3123(2013)
84. Department of Chemistry, Center for Adhesive and Sealant Science, Virginia Polytechnic Institute and State University,Blacksburg, SURFACE AND INTERFACE ANALYSIS, 26, 549--564 (1998)
85. Randy De Palma,Wim Laureyn,Filip Frederix, Kristien Bonroy,Jean-Jaques Pireaux,§ Gustaaf Borghs, Guido Maes, Formation of Dense Self-assembled Monolayers of (n-Decyl)trichlorosilanes on Ta/Ta2O5, American Chemical Society, July(23), 443-451(2007)
86. J.A. Wilks, N. P. Magtoto, J. A. Kelber, V. Arunachalam, Interfacial reactions during sputter deposition of Ta and TaN films on organosilicate glass: XPS and TEM results, Appl. Surf. Sci. 253, 6176–6184 (2007).
87. W.K. Han, G. H. Hwang, S. J. Hong, H. H. An, C. S. Yoon, J. H. Kim, M. J. Lee, G. Hong, K. S. Park, S. G. Kang, Superconformal filling of 41 nm trenches with Cu electroless deposition on Au-activated self-assembled monolayer, Mater. Chem. Phys., 123, 401 (2010).
88. Joong Ho Moon , Jin Ho Kim , Ki Jeong Kim, Tai Hee Kang, Bongsoo Kim, Chan Ho Kim, Jong Hoon Hahn, Joon Won Park, Absolute Surface Density of the Amine Group of the Aminosilylated Thin Layers: Ultraviolet−Visible Spectroscopy, Second Harmonic Generation, and Synchrotron-Radiation Photoelectron Spectroscopy Study ., Langmuir, 13(16), 4305–4310 (1997).
89. C. Önneby, C. G. Pantano, Silicon oxycarbide formation on SiC surfaces and at the SiC/SiO2SiO2 interface JVSTA 15, 1597-1602 (1997).
90. Licheng M. Hana, Ji-Sheng Panb, Shou Mian Chena, N. Balasubramaniana, Jianou Shic, Ling Soon Wongc, P. D. Fooa, Characterization of Carbon-Doped SiO2 Low k Thin Films Preparation by Plasma-Enhanced Chemical Vapor Deposition from Tetramethylsilane, Journal of The Electrochemical Society, 148(7), F148-F153 (2001).
91. G. Jakša, B. Štefane, J. Kovač, XPS and AFM characterization of aminosilanes with different numbers of bonding sites on a silicon wafer., Surf. Interface Anal., 45, 1709-1713 (2013).
92. JaeyeongHeo, Hyeong JoonKim, JeongHoon Han, Jong-Won Shon, The structures of low dielectric constant SiOC thin films prepared by direct and remote plasma enhanced chemical vapor deposition TSF, 515(07), 5035-5039 (2007).
93. An Soo Jung, R. Navamathavan, Kwang Man Lee, Chi Kyu Choi, Plasma characteristics of low-k SiOC(–H) films prepared by using plasma enhanced chemical vapor deposition from DMDMS/O2 precursors, Surface and Coatings Technology, 202(22-23), 5693-5696 (2008).
94. A. U. Alam, M. M. R. Howlader, M. J. Deen, Oxygen Plasma and Humidity Dependent Surface Analysis of Silicon, Silicon Dioxide and Glass for Direct Wafer Bonding, Journal of Solid State Science and Technology, 2(12), 515-523 (2013).
95. Fengxiang Zhang, M. P. Srinivasan, Self-Assembled Molecular Films of Aminosilanes and Their Immobilization Capacities. Langmuir, 20, 2309-2314 (2004).
96. Xiaoyan Song, Jin Zhai, Yilin Wang, Lei Jiang, Self-assembly of amino-functionalized monolayers on silicon surfaces and preparation of superhydrophobic surfaces based on alkanoic acid dual layers and surface roughening, JCIS 298, 267-273 (2006).
97. Cai Chu-jiang, Shen Zhi-gang, Xing Yu-shan, Ma Shu-lin, Surface topography and character of γ-aminopropyltriethoxysilane and dodecyltrimethoxysilane films adsorbed on the silicon dioxide substrate via vapour phase deposition, J. Phys. D, 39, 4829-4837 (2006).
98. K. Bierbaum, M. Kinzler, Ch. Woell, M. Grunze, G. Haehner, S. Heid, F. Effenberger, A Near Edge X-ray Absorption Fine Structure Spectroscopy and X-ray Photoelectron Spectroscopy Study of the Film Properties of Self-Assembled Monolayers of Organosilanes on Oxidized Si(100) .Langmuir, 11(2), 512-518 (1995).
99. Janildo L. Magalhaes, Leonardo M. Moreira, Ubirajara P. Rodrigues-Filho, Martha J. Giz, Surface chemistry of the iron tetraazamacrocycle on theaminopropyl-modified surface of oxidized n-Si(100) by AFM and XPS. Surf. Interface Anal., 33, 293-298 (2002).
100. E. Metwalli, D. Haines, O. Becker, S. Conzone, C.G. Pantano el., surface characterizations of mono-, di-, and tri-aminosilane treated glass substrates, Journal of Colloid and Interface Science, 298, 825-831 (2006).
101. S. Fiorilli, P. Rivolo, E. Descrovi, C. Ricciardi el., Vapor-phase self-assembled monolayers of aminosilane on plasma-activated silicon substrates, JCIS, 321, 235-241 (2008).
電子全文 電子全文(網際網路公開日期:20260101)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔