(3.237.178.91) 您好!臺灣時間:2021/03/02 22:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱秀姿
研究生(外文):CHIU,HSIU-TZU
論文名稱:以環境因子資料建構溫度預測模型 -以臺中市世界花卉博覽會為例
論文名稱(外文):Using Environmental Factor Data to Build Temperature Prediction Models-A Case Study of Taichung World Flora Exposition
指導教授:徐逸祥徐逸祥引用關係
指導教授(外文):SHIU,YI-SHIANG
口試委員:王素芬莊永忠賴哲儇
口試委員(外文):WANG,SU-FENCHUANG,YUNG-CHUNGLai ,JHE-SYUAN
口試日期:2020-07-02
學位類別:碩士
校院名稱:逢甲大學
系所名稱:都市計畫與空間資訊學系
學門:建築及都市規劃學門
學類:都市規劃學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:92
中文關鍵詞:環境因子地表溫度空間迴歸溫度預測
外文關鍵詞:environmental factorssurface temperaturespatial regressiontemperature prediction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要使用Landsat 8影像反演地表溫度,並蒐集影響溫度的地形、土地利用、氣溶膠濃度、天氣等相關因子,且經過相關性分析篩選相關性高的因子以作為本研究預測模型之變數,若可以準確的預測未來規劃區的地表溫度,規劃者即可提前知道規劃是否可以符合期待。
預測模型方面,以2015年、2016年與雙年度2015年及2016年作為樣本年,2019年作為預測年,並選定估計迴歸係數最常使用的最小平方法 (ordinary least squares, OLS) 傳統線性迴歸得出之誤差項作相依性檢定及配適度檢定,以檢定空間落遲模型(spatial lag model, SLM)以及空間誤差模型(spatial error model, SEM)何者模型表現較好,結果為SEM較SLM表現好。因此本研究將OLS及SEM預測2019年的結果作比較,得出2015年資料作三個園區預測之模型皆以OLS模型誤差較低,均方根誤差(root-mean-square error, RMSE)值為1.93至2.59度之間,SEM則為2.10至3.13度之間。以2016年的資料預測后里園區與外埔園區以SEM誤差較低,葫蘆墩園區以OLS誤差較低,OLS的RMSE在5.63至6.82度之間,SEM則為5.46至7.92度之間。以雙年度資料預測后里園區與葫蘆墩園區以OLS誤差較低,外埔園區則以SEM誤差較低,OLS的RMSE在2.43至6.07度之間,SEM則為2.24至6.77度之間。
將衛星反演溫度圖與迴歸模型預測溫度圖做差值比較,並比對衛星影像,發現預測結果誤差較低的地方多為植被覆蓋,誤差值較高的通常為裸土與建物等人造舖面。
本研究結果發現氣象因子造成預測溫度誤差較大,後續研究不建議當作預測因子,未來可以加入夏季月份,以探討冬季因子與夏季因子之差異,並統整因子,進一步探討資料連續性以及增加年度資料量是否影響預測地表溫度的精準度。

This study mainly used Landsat 8 image to retrieve surface temperature and collected relevant factors concerning topography, land use, aerosol concentration and weather conditions. These fac-tors were selected with correlation analysis to keep highly relevant factors for prediction model in this study. If the surface temperature of the planned area can be accurately predicted in the future, plan-ners can know in advance whether the plan can meet expectations.
The most commonly used traditional linear regression in geo-spatial prediction, ordinary least squares (OLS), was selected to test which model, spatial lag model (SLM) or spatial error model (SEM), performs better in spatial dependency and goodness of fit. The re-sult showed that SEM performs better than SLM. Therefore, this study compared the prediction results of OLS and SEM in 2019, and concluded that when using the data from 2015, the OLS model had lower error. The root-mean-square error (RMSE) of OLS is be-tween 1.93 and 2.59, and that of SEM is between 2.10 and 3.13. With the data from 2016 and that from both 2015 and 2016, it is not fixed which model is better. The RMSE of OLS is between 3.34 and 6.82, and that of SEM is between 3.70 and 7.92.
The prediction results in Houli and Waipu Park with the data from 2016 and the SEM model had lower error; while in Huludun Park, the results with the OLS model had lower error. The RMSE of OLS was between 5.63 and 6.82, and the RMSE of SEM was be-tween 5.46 and 7.92. With the data from both 2015 and 2016, the prediction results of OLS model in Houli Park and Huludun Park had lower error, while that of SEM model in Waipu Park had lower error. The RMSE of OLS is between 2.43 and 6.07, and the RMSE of SEM is between 2.24 and 6.77.
Compared the difference between the retrieved temperature maps from the satellite images and the predicted ones from the re-gression models, this study found that the land cover with lower prediction error was mostly vegetation cover, and that with higher error was usually artificial land cover such as bare soil and buildings.
The results of this study found that the meteorological factors cause large errors in forecasting temperature, so these factors were not recommended as predictive factors for future study. In the future, summer months can be added to explore the difference between win-ter and summer factors. These factors can also be integrated to fur-ther explore the continuity of data and explore if the increase in the amount of annual data will affect the accuracy or not.

第一章、 緒論 10
第一節 研究動機及目的 10
第二節 研究範圍 11
第三節 研究限制 14
第四節 研究流程 15
第二章、 文獻探討 17
第一節 環境溫度觀測法 17
第二節 地表溫度反演 20
第三節 地表溫度影響因子 22
第四節 小結 27
第三章、 研究方法 29
第一節 衛星影像 29
第二節 溫度反演 31
第三節 研究因子 39
第四節 建構模型 50
第五節 小結 54
第四章、 實證結果與分析 55
第一節 全區地表溫度反演 55
第二節 統計迴歸分析 57
第三節 花博園區地表溫度預測 73
第五章、 結論及建議 90

Anselin, L. (2005). Exploring spatial data with GeoDaTM: a workbook. Center for Spatially Integrated Social Science.
Dirksen, M., Ronda, R. J., Theeuwes, N. E., &Pagani, G. A. (2019). Sky view factor calculations and its application in urban heat island studies. Urban Climate, 30, 100498.
Firozjaei, M. K., Weng, Q., Zhao, C., Kiavarz, M., Lu, L., &Alavipanah, S. K. (2020). Surface anthropogenic heat islands in six megacities: An assessment based on a triple-source surface energy balance model. Remote Sensing of Environment, 242, 111751.
Gao, B.-C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266.
Jiang, Z., Huete, A. R., Didan, K., &Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10), 3833–3845.
Jiménez-Muñoz, J. C., Sobrino, J. A., Skoković, D., Mattar, C., &Cristóbal, J. (2014). Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geoscience and Remote Sensing Letters, 11(10), 1840–1843.
Khandelwal, S., Goyal, R., Kaul, N., &Mathew, A. (2018). Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 87–94.
Kim, Y. (2010). Spectral compatibility of vegetation indices across sensors: band decomposition analysis with Hyperion data. Journal of Applied Remote Sensing, 4(1), 043520.
Kokalj, Ž., Zaksek, K., &Oštir, K. (2011). Application of sky-view factor for the visualization of historic landscape features in lidar-derived relief models. Antiquity, 85, 263–273.
Lindberg, F., Grimmond, C. S. B., Gabey, A., Huang, B., Kent, C. W., Sun, T., …Zhang, Z. (2018). Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services. Environmental Modelling and Software, 99, 70–87.
Lindberg, F., Thorsson, S., Rayner, D., &Lau, K. (2016). The impact of urban planning strategies on heat stress in a climate-change perspective. Sustainable Cities and Society, 25, 1–12.
Mathew, A., Sreekumar, S., Khandelwal, S., &Kumar, R. (2019). Prediction of land surface temperatures for surface urban heat island assessment over Chandigarh city using support vector regression model. Solar Energy, 186, 404–415.
Mihalakakou, G., Flocas, H. A., Santamouris, M., &Helmis, C. G. (2002). Application of neural networks to the simulation of the heat island over Athens, Greece, using synoptic types as a predictor. Journal of Applied Meteorology, 41(5), 519–527.
Oke, T. R. (2004). Initial guidance to obtain representative meteorological observations at urban sites. World Meteorological Organization, (81), 51.
Pandey, P., Kumar, D., Prakash, A., Masih, J., Singh, M., Kumar, S., …Kumar, K. (2012). A study of urban heat island and its association with particulate matter during winter months over Delhi. Science of The Total Environment, 414, 494–507.
Rouse, J. W., Haas, R. H., Schell, J. A., &Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA Special Publication, 351, 309.
Stewart, I. D., &Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879–1900.
Sussman, H. S., Raghavendra, A., &Zhou, L. (2019). Impacts of increased urbanization on surface temperature, vegetation, and aerosols over Bengaluru, India. Remote Sensing Applications: Society and Environment, 16, 100261.
Zhi-Hao, Q., Zhang, M.-H., &Karnieli, A. (2001). Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data. ACTA GEOGRAPHICA SINICA-CHINESE EDITION-, 56(4), 466–474.
交通部統計查詢網,(2020),交通部統計查詢網,上網日期:2020年7月05日,檢自 https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100。
何漢傑 (2008) 。利用 MODIS 影像於水稻田蒸發散之研究。中央大學太空科學研究所學位論文,1–89。
呂明倫、鍾玉龍 (2007) 。以 SPOT 衛星植生指標推估南仁山次生林之林分結構特徵。臺灣林業科學,22(2),183–192。
孫振義(2008) 。運用遙測技術於都市熱島效應之研究。成功大學建築學系學位論文。
孫振義、林憲德 (2006) 。台南地區都市熱島強度全年變動之研究 TT - Annual Variation of Urban Heat Island Intensity in the Tainan Region。都市與計劃,33(1),51–68.
徐涵秋 (2016) 。Landsat 8 热红外数据定标参数的变化及其对地表温度反演的影响。Journal of Remote Sensing,20(2)。
徐涵秋、林中立、潘卫华 (2015) 。单通道算法地表温度反演的若干问题讨论——以 Landsat 系列数据为例。武汉大学学报(信息科学版),40(4),487–492。
李瑞陽、陳勝義 (2010) 。台中市搶奪犯罪熱點與犯罪區位之空間分析。地理研究,(53),23–48。
林中立、徐涵秋(2017) 。基于 LCZ 的城市热岛强度研究。地球信息科学学报,19.713--722。
林炯明(2010) 。都市熱島效應之影響及其環境意涵。環境與生態學報,3(1), 1–15。
江美菊(2012) 。相關係數面面觀。政治大學應用數學系數學教學碩士在職專班學位論文,1–30。
翁銘宏(2010) 。都市熱環境與表面溫度關係之研究-以台北市為例。中國文化大學景觀學系碩士論文,台北市。
蘇晨媛(2019) 。地表溫度與土地使用型態關係之探討與模擬-以板橋區為例,國立交通大學土木工程系所碩士論文,新竹市。
覃志豪(2019) 。地表温度反演的单通道方法汇总——以Landsat 8 TIRS影像为例。上網日期:2020年7月25日,檢自https://zhuanlan.zhihu.com/p/92060204。
郭柏巖 (2000) 。都市公園微氣候觀測解析。碩士論文,國立成功大學建築研究所,臺南。



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔