(3.235.108.188) 您好!臺灣時間:2021/02/28 00:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳怡婷
研究生(外文):CHEN, YI-TING
論文名稱:導電紗和彈性絲建構刺繡織物按鍵的可行性評估
論文名稱(外文):Feasibility Study of the Construction of Embroidered Textile Push-Buttons with Conductive Yarns and Elastic Filaments
指導教授:石天威石天威引用關係沈乾龍沈乾龍引用關係
指導教授(外文):SHYR, TIEN-WEISHEN, CHIEN-LUNG
口試委員:楊宇浩沈乾龍石天威
口試委員(外文):YANG, YU-HAOSHEN, CHIEN-LUNGSHYR, TIEN-WEI
口試日期:2020-07-17
學位類別:碩士
校院名稱:逢甲大學
系所名稱:纖維與複合材料學系
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:75
中文關鍵詞:織物按鍵電阻導通力回彈性耐用性
外文關鍵詞:textile push-buttonresistanceconduction forceresilience ratedurability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究以十字繡布為基布,採用兩種導電紗,包含不鏽鋼長纖紗和不鏽鋼含量為40 %混紡短纖紗的不同組合,配合彈性絲根數的變化,進行雙層織物按鍵建構。將導電紗嵌入基布中使其具備導電性,並在織物按鍵上層以彈性絲提供按壓支撐與回彈的功能。本研究主要探討織物按鍵上下層組織結構對系統電阻、導通力、回彈率、按壓及水洗耐用性等等性質。由於不鏽鋼長纖紗與短纖紗之電阻差異甚大,後者紗需用 4 根刺繡,電阻才趨穩,故本研究係以 1 根長纖紗與 4 根短纖紗為刺繡的基準。織物按鍵上下層導電紗的組合,配合彈性絲刺繡根數,可改變織物按鍵導通力大小,作為不同應用的選擇。織物按鍵導通力的大小,取決於按壓時,按鍵系統電阻是否下降到某一程度 (< 10 kΩ)。實驗結果顯示,若上層採用 1 根長纖紗 (f1)與單根彈性絲 (E1),下層使用 4 根短纖紗 (s4),可得到最佳按鍵組合 (E1-f1/ s4)。該組合可維持高回彈率 (> 92 %),經過30,000次反覆按壓織物按鍵後,導通力下降約13 %。在水洗耐用性方面,E1-f1/ s4 織物按鍵水洗20 次後,回彈率基本上不受影響,然而下層短纖紗水洗後較為蓬鬆彎曲,並且毛羽增加,使織物按鍵導通力顯著下降約71 %。此外,有關紗線刺繡之按壓力與電阻關連性,以及織物按鍵系統之按壓力對電阻影響等,均在本文中詳細探討。
   In this study, various combinations of conductive yarns together with changes in the number of elastic filaments were used to construct double-layered textile push-buttons on cross-stitch fabrics. In the experiments, stainless steel (SS) filaments and 40 % SS blended spun yarns were used as conductive yarns, and elastic filaments were used for compression support and resilience. Several important characteristics of layered structures of textile push-buttons were evaluated, such as system resistance, conduction force, resilience rate, pressing and washing durability. Since the resistance between SS filaments and blended spun yarns is significantly different, the latter requires four yarns to embroider simultaneously for stabilizing the resistance. Therefore, the implementation was based on one filament yarn (f1) and four blended spun yarns (s4) as the embroidery benchmark. The selection of conductive yarns in the upper and lower layers and the number of elastic filaments in the upper layer can change the conduction force of the push-button to suit different applications. The conduction force of the push-button depends on whether the resistance of the system can be dropped to a certain level (< 10 kΩ) when pressed. The results indicate that if the use of f1 and E1 (one elastic filament) in the upper layer and s4 in the lower layer, the most suitable push-button, namely E1-f1/ s4, can be obtained. In addition to the high resilience rate (> 92 %), this combination can also sustain 30,000 repeated presses, reducing the conduction force by 13 %. In terms of washing durability, the resilience rate of the E1-f1/ s4 push-button was basically unaffected by 20 washings. However, the blended spun yarns in the lower layer became fluffy after washing, and the yarn was deformed with an increase in hairiness, resulting in a reduction of the conduction force by about 71 %. Moreover, the influence of embroidery path and conduction force on the resistance of the yarn embroidery, and the relationship between the conduction force and resistance of the push-button system are discussed in this work.
誌謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 織物鍵盤組成結構與製造方法 4
1.3 織物的壓縮性能與行為 10
1.4 不繡鋼導電紗線之形態與性能 12
1.5 研究動機 14
第二章 實驗 15
2.1 實驗材料 15
2.2 織物按鍵製造 19
2.3 實驗儀器 22
2.4 實驗方法 26
第三章 結果與討論 34
3.1 導電紗線刺繡路徑之電阻分析 34
3.2 導電紗線刺繡之按壓力與電阻關連性分析 41
3.3 織物按鍵之導通力分析 45
3.4 織物按鍵按壓力之電阻分析 53
3.5 織物按鍵間隔區彈性絲之回彈性評估 56
3.6 織物按鍵及間隔區彈性絲之水洗耐用性評估 63
第四章 結論 69
未來發展與建議 70
參考文獻 71

[1]K. Bogan, Seyam, A. F. M. Seyam, J. Slade (2017). Evaluation of the Electrical Integrity of E-textiles Subjected to Environmental Conditions, The Journal of The Textile Institute, Vol. 109(3), pp. 393–409.
[2]T. Hughes-Riley, T. Dias, C. Cork, (2018). A Historical Review of the Development of Electronic Textiles. Fibers, 6(2), 34.
[3]T. M. Fernández-Caramés, P. Fraga-Lamas, (2018). Towards The Internet of Smart Clothing: A Review on IoT Wearables and Garments for Creating Intelligent Connected E-Textiles. Electronics, 7(12), 405.
[4]M. Stoppa, A. Chiolerio, (2014). Wearable Electronics and Smart Textiles: A Critical Review. Sensors, 14(7), pp,11957–11992.
[5]K. Cherenack, L. van Pieterson, (2012). Smart textiles: Challenges and opportunities. Journal of Applied Physics, Vol. 112(9), 091301.
[6]機能性暨產業用紡織品認證與驗證評議委員會 (2017)。FTTS-FP-171 紡織品和紡織產品—智慧紡織品—定義、分類、應用和標準化需求。
[7]M. Ghahremani Honarvar, M. Latifi (2016). Overview of Wearable Electronics and Smart Textiles. The Journal of The Textile Institute, Vol. 108(4), pp. 631–652.
[8]A. F. M. Seyam, T. Hamouda (2013). Smart textiles: evaluation of optical fibres as embedded sensors for structure health monitoring of fibre reinforced composites. Journal of the Textile Institute, 104(8), 892–899.
[9]I. Poupyrev, , N. W. Gong, S. Fukuhara, M. E. Karagozler, C. Schwesig, K. E. Robinson (2016). Project Jacquard: Interactive Digital Textiles at Scale, Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems - CHI ’16, pp. 4216–4227.
[10]E. R. Post, M. Orth, P. R. Russo, N. Gershenfeld, (2000). E-broidery: Design and Fabrication of Textile-based Computing. IBM Systems Journal, Vol. 39, pp. 840–860.
[11]A. Kiourti, J. L. Volakis, (2015). High-Geometrical-Accuracy Embroidery Process for Textile Antennas With Fine Details. IEEE Antennas and Wireless Propagation Letters, Vol. 14, pp. 1474–1477.
[12]A. Taylor (2009). Digital Embroidery Techniques for Smart Clothing. Smart Clothes and Wearable Technology, pp. 279–299.
[13]U. Briedis, A. Valisevskis, M. Grecka (2017). Development of a Smart Garment Prototype with Enuresis Alarm Using an Embroidery-machine-based Technique for the Integration of Electronic Components. Procedia Computer Science, Vol. 104, pp. 369–374.
[14]A. Tsolis, W. Whittow, A. Alexandridis, J. Vardaxoglou, (2014). Embroidery and Related Manufacturing Techniques for Wearable Antennas: Challenges and Opportunities. Electronics, Vol. 3(2), pp.314–338.
[15]P. Duplock (2012). Soft Products: Smart Fabrics in Product Design. Smart Design, 109–114.
[16]R. D. Hurford (2009). Types of Smart Clothes and Wearable Technology. Smart Clothes and Wearable Technology, pp. 25–44.
[17]S. Coyle, Y. Wu, K. T. Lau, D. De Rossi, G. Wallace, D. Diamond (2007). Smart Nanotextiles: A Review of Materials and Applications. Mars Bulletin, Vol. 32, pp. 434–442.
[18]E. R. Post, M. Orth (1997). Smart Fabric, or "Wearable Clothing", Digest of Papers. First International Symposium on Wearable Computers, pp. 167–168.
[19]M. Sergio, N. Manaresi, M. Tartagni, R. Guerrieri, R. Canegallo (2002). A Textile Based Capacitive Pressure Sensor, Sensors, pp. 1625–1630.
[20]Z. Hui, T. X. Ming, Y. T. Xi, L. X. Sheng (2006). Pressure Sensing Fabric, Materials Research Society Proceedings, Vol. 920.
[21]李喬、丁辛,織物開關的研製 (2009)。東華大學學報,第35卷,第2期,161–165頁。
[22]郭倩、張美玲、劉雙寶、王瑞 (2010)。織物鍵盤開關X型結構的研究,山東紡織科技,第1期,25–28頁。
[23]T. He, M. L. Zhang, L. Q. Jin, H. W. Liu (2013). Four Layers Weaved once Structure Design and Conduction Pressure Testing Analysis for Fabric Switch, Advanced Materials Research, Vol. 627, pp. 263–266.
[24]M. L. Zhang, R. Wang (2009). Structural Design and Performance Testing of Flexible Fabric Keyboard Switch. Advanced Materials Research, Vol. 79–82, pp. 1133–1136.
[25]張美玲、袁立靜 (2015)。基於回應面模型的織物開關結構參數與導通壓力的關係,天津工業大學學報,第34卷,第2期,33–37頁。
[26]張美玲、古夢南 (2017)。基於有限元分析柔性織物鍵盤開關的疲勞性能,天津工業大學學報,第36卷,第4期,32–37頁。
[27]M. Matsudaira, Q. Hong (1994). Features and Characteristic Values of Fabric Compressional Curves, International Journal of Clothing Science and Technology, Vol. 6, pp. 37–43.
[28]汪學騫、許德華、金世偉,服裝面料的壓縮性能與基本風格的研究 (1998)。毛紡科技,第4期,15–19頁。
[29]S. V. Lomov, I. Verpoest (2000). Compression of Woven Reinforcements: A Mathematical Model. Journal of Reinforced Plastics and Composites, vol. 19(16), pp. 1329–1350.
[30]廖耀宇 (2014)。認識不銹鋼,技師期刊,第64&65期,121–125頁。
[31]L. Cheng, T. Zhang, M. Guo, J. Li, S. Wang, H. Tang, H (2014). Electromagnetic Shielding Effectiveness and Mathematical Model of Stainless Steel Composite Fabric. The Journal of The Textile Institute, vol. 106(6), pp. 577–586.
[32]C. W. Lou, C. M. Lin, W. H. Hsing, A. P Chen, J. H. Lin (2011). Manufacturing Techniques and Electrical Properties of Conductive Fabrics with Recycled Polypropylene Nonwoven Selvage. Textile Research Journal, vol. 81(13), pp. 1331–1343.
[33]J. Xie, S. Gordon, H. Long, M. Miao (2015). Electrical Percolation of Fibre Mixtures, Applied Physics A, Vol. 121, pp. 589–595.
[34]謝靜玟 (2006)。聚酯/不銹鋼紗的電磁性質及其織物結構對電磁遮蔽特性之探討,碩士論文。
[35]閆學玲、常麗霞 (2008)。十字繡和傳統刺繡——時尚與經典的撞擊,國外絲綢,第5期,35–38頁。
[36]S. J. Kadolph (2014). Textiles. Harlow: Pearson Education Limited. pp. 237–238.
[37]B. J. Collier, M. Bide, P. G. Tortora (2009). Understanding Textiles. New Jersey: Pearson Prentice Hall. P. 198.
[38]E. Flynn, S. Patel (2016). The Really Useful Primary Design and Technology Book: Subject Knowledge and Lesson Ideas. New York: Routledge. P.86.
[39]J. Skelton, M. M. Schoppee (1976). Geometric Freedom in Bent Yarns and Fabrics. Textile Research Journal, vol. 46(1), pp. 44–51.
[40]W. D. Freeston, M. M. Schoppee (1975). Geometry of Bent Continuous-Filament Yarns. Textile Research Journal, vol. 45(12), pp. 835–852.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔