(3.236.175.108) 您好!臺灣時間:2021/02/28 03:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柯寰傑
研究生(外文):KO, HUAN-CHIEH
論文名稱:聚乳酸聚合物和纖維的均聚物結晶和立構複合物結晶之研究
論文名稱(外文):Studies of Homocrystallization and Stereocomplex Crystallization of Polylactide Polymers and Fibers
指導教授:石天威石天威引用關係
指導教授(外文):SHYR, TIEN-WEI
口試委員:陳信龍吳逸謨石天威吳宗明芮祥鵬
口試委員(外文):CHEN, HSIN-LUNGWOO, EAMOR M.SHYR, TIEN-WEIWU, TZONG-MINGRWEI, SYANG-PENG
口試日期:2020-07-29
學位類別:博士
校院名稱:逢甲大學
系所名稱:纖維與複合材料學系
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:134
中文關鍵詞:聚乳酸均聚物結晶立構複合物結晶同心圓球晶
外文關鍵詞:polylactidehomocrystallizationstereocomplex crystallizationconcentric spherulite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要針對聚左旋乳酸(Poly L-lactic acid, PLLA)和聚右旋乳酸(Poly D-lactic acid, PDLA)共混後聚合物和纖維的均聚物和立構複合物的結晶行為,分為四章節討論。各章節討論的主題分別為,第三章:聚乳酸立構複合結晶行為與球晶型態、第四章: PLLA/PDLA (LD)共混纖維於升溫過程中均聚物和立構複合物的結晶行為、第五章:PLLA/PDLA/PHBV共混纖維的製備與結晶行為、和第六章:不同儲存條件下PLLA/PDLA共混聚合體的熱穩定性和結晶行為。
第三章依據Lauritzen-Hoffman二次成核理論,探討立構複合物結晶的regime II→III轉移溫度。發現立構複合物結晶的regime II→III轉移溫度在165 °C,不會因為共混比例的不同而改變。利用兩步等溫結晶條件形成立構複合物結晶和均聚物結晶所組成的同心圓球晶,在同心圓內受限空間的球晶生長速率和未受限空間生長的球晶生長速率有所不同。第四章探討PLA纖維於升溫過程中分子鏈的熱鬆弛現象,均聚物和立構複合物冷結晶、熔融、與再結晶行為;發現通過紡絲過程,將會導致分子鏈更近一步一對一排列,從而促進立構複合物結晶再升溫過程中的形成。第五章針對少量PHBV加入PLA對其結晶行為的探討,發現少量PHBV加入PLA打亂PLA分子鏈的規整性,導致共混聚合體的PLA結晶程度隨著PHBV含量的增加而降低;如在PLLA/PDLA/PHBV條件下,立構複合物結晶的產生可以改善均聚物的結晶行為;共混纖維中並沒有觀察到立構複合物結晶的存在。第六章探討PLLA、PDLA、和LD於室溫儲存在真空袋和在乾燥箱內三年後的熱穩定性和結晶行為,發現儲存在真空袋和在乾燥箱內材料的水解行為明顯不同;存放在乾燥箱內有明顯的水解行為發生,導致其熱穩定性明顯下降、熔點下降和熱焓上升。存放在乾燥箱的LD-D只有立構複合物結晶產生,沒有均聚物結晶存在。

The focus of this research is the homocrystallization and stereocomplex crystallization in poly(L-lactide)/poly(D-lactide) blends and fibers. This study is divided into four chapters: Chapter 3. Crystallization and spherulite morphology of polylactide stereocomplex; Chapter 4. Homocrystallization and stereocomplex crystallization behaviors of as-spun and hot-drawn PLLA/PDLA blended fibers during heating; Chapter 5. Formation and fiber structure of PLLA/PDLA/PHBV blended fibers; Chapter 6. Effect of storage conditions on the thermal stability and crystallization behaviors of PLLA/PDLA.
In Chapter 3, it was found that the regime II → III transition temperature of stereocomplex crystals in the Lauritzen–Hoffman plot of the LD blends was determined to be 165 °C. A concentric spherulite consisting of stereocomplex crystals and homocrystals formed under two-step isothermal crystallisation conditions with three growth stages was observed. The confined spherulitic growth rate in the concentric spherulite and the unrestricted spherulitic growth rate in individual spherulite were also analysed. In Chapter 4, we studied the movement of fiber molecular chains, including the orientation and relaxation of molecular chains, as well as crystallization, melting, and recrystallization of homocrystals and stereocomplex crystals. The side-by-side packing of the molecular chains was promoted by mixing the molecular chains with the extrusion screw during the spinning process, facilitating stereocomplex crystallization. In Chapter 5, it was found that the addition of PHBV to PLLA would disrupt the regularity of the PLA molecular chains, resulting in a decrease in the crystallinity of PLA of PLLA/PHBV blends, but the formation of stereocomplex crystal may be beneficial to the crystallization of PLLA/PDLA/PHBV blends. No stereocomplex crystal were observed in PLLA/PDLA/PHBV fibers. In Chapter 6, the differences in the hydrolysis of PLLA, PDLA, and LD samples under two sets of laboratory storage conditions for 3 years were studied. When stored in vacuum-sealed bags, PLLA, PDLA, and LD samples hydrolyzed slowly; while when stored in a vacuum-free desiccator, they degraded significantly. This process significantly reduced the thermal stability of the samples stored in the vacuum-free desiccator, resulting in a lower melting point and an increase in the endothermic enthalpy. When the LD sample was stored in a vacuum-free desiccator, only stereocomplex crystals were formed, and no homocrystals were observed.

誌謝 I
摘要 II
ABSTRACT IV
目 錄 VI
第1章 緒論 1
1.1簡介 1
1.2聚乳酸 3
1.3聚乳酸立構複合物結晶 5
1.4研究目的 10
第2章 實驗儀器與分析技術 11
2.1廣角X光繞射儀(WIDE ANGLE X-RAY DIFFRACTION, WAXD) 11
2.2同步輻射廣角X光散射儀(SYNCHROTRON WIDE ANGLE X-RAY DIFFRACTION, WAXD) 11
2.3調製溫度式微差掃描熱分析儀(MODULATED DIFFERENTIAL SCANNING CALORIMETER, MDSC) 12
2.4可加熱式偏光顯微鏡(HOT STAGE POLARIZING MICROSCOPE, HSPM) 14
2.5熱重分析儀(THERMALGRAVIMETRIC ANALYZER, TGA) 16
2.6凝膠滲透層析儀(GEL PERMEATION CHROMATOGRAPHY, GPC) 17
2.7纖維順向度量測儀(ACOUSTIC INSTRUMENT) 17
第3章 聚乳酸立構複合結晶行為與球晶型態 19
3.1 DSC分析 20
3.1.1試樣準備與實驗 20
3.1.2 結晶與熔融行為分析 21
3.1.2非等溫結晶動力學分析 25
3.3 WAXD分析 28
3.3.1試樣準備與實驗 28
3.3.2結晶結構分析 28
3.5 二次成核動力學分析 31
3.5.1 試樣準備與實驗 31
3.5.2 regime轉移分析 32
3.5.2 球晶形態分析 35
3.4 同心圓球晶分析 36
3.4.1 試樣準備與實驗 36
3.4.1 立構複合物結晶與均聚物結晶組成同心圓 36
3.5 小結 42
第4章 PLLA/PDLA共混纖維於升溫過程中均聚物和立構複合物的結晶行為 45
4.1 結晶結構與順向分析 47
4.1.1試樣準備與實驗 47
4.1.2 LD共混切粒晶體結構與順向分析 48
4.1.3 LD共混纖維晶體結構與順向分析 49
4.2熱性質分析 52
4.2.1試樣準備與實驗 52
4.3.2 標準DSC結晶與熔融行為分析 53
3.3.3 調制溫度式DSC結晶與熔融行為分析 56
4.3升溫過程中的結晶變化分析 59
4.3.1試樣準備與實驗 59
4.3.2 HSPM升溫觀察 59
4.3.3 Real-time WAXD升溫觀察 63
4.4 小結 65
第5章 PLLA/PDLA/PHBV共混纖維的製備與結晶行為探討 67
5.1 DSC分析 69
5.1.1試樣準備與實驗 69
5.1.2 結晶與熔融行為分析 70
5.2 WAXD晶體結構分析 75
5.2.1試樣準備與實驗 75
5.2.2 LH和LDH共混切粒晶體結構分析 75
5.2.3 LH和LDH共混纖維晶體結構分析 79
5.3 纖維順向度分析 80
5.3.1試樣準備與實驗 80
5.3.2分子鏈順向分析 81
5.3.3結晶順向度分析 83
5.4 小結 84
第6章 不同儲存條件下PLLA/PDLA共混聚合體的熱穩定性和結晶行為 87
6.1 TGA分析 90
6.1.1試樣準備與實驗 90
6.1.2非等溫熱裂解行為 90
6.2 GPC分析 92
6.2.1試樣準備與實驗 92
6.2.2分子量分佈 92
6.3 DSC分析 94
6.3.1試樣準備與實驗 94
6.1.2 結晶與熔融行為分析 95
6.4 WAXD分析 98
6.4.1試樣準備與實驗 98
6.4.2熔融前與熔融後結晶結構變化 99
6.5 小結 101
第7章 結論 103
參考文獻 106

[1]A. J. Lasprilla, G. A. Martinez, B. H. Lunelli, A. L. Jardini, and R. Maciel Filho, "Poly-lactic acid synthesis for application in biomedical devices—A review," Biotechnology advances, vol. 30, no. 1, pp. 321-328, 2012.
[2]Y. Ikada, K. Jamshidi, H. Tsuji, and S. H. Hyon, "Stereocomplex formation between enantiomeric poly (lactides)," Macromolecules, vol. 20, no. 4, pp. 904-906, 1987.
[3]T. Okihara et al., "Crystal structure of stereocomplex of poly (L-lactide) and poly (D-lactide)," Journal of Macromolecular Science, Part B: Physics, vol. 30, no. 1-2, pp. 119-140, 1991.
[4]H. Tsuji, K. Tashiro, L. Bouapao, and M. Hanesaka, "Synchronous and separate homo-crystallization of enantiomeric poly (l-lactic acid)/poly (d-lactic acid) blends," Polymer, vol. 53, no. 3, pp. 747-754, 2012.
[5]H. Xu, C. Teng, and M. Yu, "Improvements of thermal property and crystallization behavior of PLLA based multiblock copolymer by forming stereocomplex with PDLA oligomer," Polymer, vol. 47, no. 11, pp. 3922-3928, 2006.
[6]H. Tsuji, H. Takai, and S. K. Saha, "Isothermal and non-isothermal crystallization behavior of poly (L-lactic acid): Effects of stereocomplex as nucleating agent," Polymer, vol. 47, no. 11, pp. 3826-3837, 2006.
[7]T.-M. Wu, "Crystallization Behavior of Polylactide Stereocomplex," Thesis, Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan, 2014.
[8]H.-C. Ko, "Transformation of Homocrystallite/Stereocomplex Crystallite of PLLA/PDLA Blended Filaments During the Heating Process," Thesis, Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan, 2015.
[9]T. Hatakeyama and F. Quinn, Thermal analysis: fundamentals and applications to polymer science. Wiley, 1999.
[10]T. Scharf, "Polarized Light," in Polarized Light in Liquid Crystals and Polymers: John Wiley & Sons, 2007, pp. 1-18.
[11]W. Charch and W. Moseley Jr, "Structure-property relationships in synthetic fibers: Part I: Structure as revealed by sonic observations," Textile Research Journal, vol. 29, no. 7, pp. 525-535, 1959.
[12]S. E. Ross, "Relationship of Polypropylene Fiber Orientation as Determined by Optical Birefringence and Sonic Velocity Measurements," Textile Research Journal, vol. 34, no. 7, pp. 565-571, 1964.
[13]L. Bouapao and H. Tsuji, "Stereocomplex Crystallization and Spherulite Growth of Low Molecular Weight Poly (L‐lactide) and Poly (D‐lactide) from the Melt," Macromolecular Chemistry and Physics, vol. 210, no. 12, pp. 993-1002, 2009.
[14]L. Jiang, P. Lv, P. Ma, H. Bai, W. Dong, and M. Chen, "Stereocomplexation kinetics of enantiomeric poly (L-lactide)/poly (D-lactide) blends seeded by nanocrystalline cellulose," RSC advances, vol. 5, no. 87, pp. 71115-71119, 2015.
[15]Q. Liu, M. Zhu, B. Deng, C.-H. Tung, and T.-W. Shyr, "Evolution of concentric spherulites in crystalline-crystalline poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-b-poly (ethylene glycol) copolymers," European polymer journal, vol. 49, no. 12, pp. 3937-3946, 2013.
[16]J. Lu, Z. Qiu, and W. Yang, "Effects of blend composition and crystallization temperature on unique crystalline morphologies of miscible poly (ethylene succinate)/poly (ethylene oxide) blends," Macromolecules, vol. 41, no. 1, pp. 141-148, 2008.
[17]Z. Qiu, T. Ikehara, and T. Nishi, "Unique morphology of poly (ethylene succinate)/poly (ethylene oxide) blends," Macromolecules, vol. 35, no. 22, pp. 8251-8254, 2002.
[18]E. M. Woo and L. Chang, "Crystallization and morphology of stereocomplexes in nonequimolar mixtures of poly (l-lactic acid) with excess poly (d-lactic acid)," Polymer, vol. 52, no. 26, pp. 6080-6089, 2011.
[19]W. Shi and C. C. Han, "Dynamic competition between crystallization and phase separation at the growth interface of a PMMA/PEO blend," Macromolecules, vol. 45, no. 1, pp. 336-346, 2012.
[20]C. He et al., "Study of the Synthesis, Crystallization, and Morphology of Poly (ethylene glycol)− Poly (ε-caprolactone) Diblock Copolymers," Biomacromolecules, vol. 5, no. 5, pp. 2042-2047, 2004.
[21]C. He et al., "Formation of a Unique Crystal Morphology for the Poly (ethylene glycol)− Poly (ε-caprolactone) Diblock Copolymer," Biomacromolecules, vol. 7, no. 1, pp. 252-258, 2006.
[22]C. He, J. Sun, J. Ma, X. Chen, and X. Jing, "Composition Dependence of the Crystallization Behavior and Morphology of the Poly (ethylene oxide)-poly (ε-caprolactone) Diblock Copolymer," Biomacromolecules, vol. 7, no. 12, pp. 3482-3489, 2006.
[23]Y. He, Y. Xu, J. Wei, Z. Fan, and S. Li, "Unique crystallization behavior of poly (L-lactide)/poly (D-lactide) stereocomplex depending on initial melt states," Polymer, vol. 49, no. 26, pp. 5670-5675, 2008.
[24]T. Biela, A. Duda, and S. Penczek, "Enhanced melt stability of star-shaped stereocomplexes as compared with linear stereocomplexes," Macromolecules, vol. 39, no. 11, pp. 3710-3713, 2006.
[25]H. Tsuji, F. Horii, S. H. Hyon, and Y. Ikada, "Stereocomplex formation between enantiomeric poly (lactic acid) s. 2. Stereocomplex formation in concentrated solutions," Macromolecules, vol. 24, no. 10, pp. 2719-2724, 1991.
[26]H. Tsuji, S. H. Hyon, and Y. Ikada, "Stereocomplex formation between enantiomeric poly (lactic acid) s. 3. Calorimetric studies on blend films cast from dilute solution," Macromolecules, vol. 24, no. 20, pp. 5651-5656, 1991.
[27]H. Tsuji, S. H. Hyon, and Y. Ikada, "Stereocomplex formation between enantiomeric poly (lactic acid) s. 4. Differential scanning calorimetric studies on precipitates from mixed solutions of poly (D-lactic acid) and poly (L-lactic acid)," Macromolecules, vol. 24, no. 20, pp. 5657-5662, 1991.
[28]H. Tsuji, S. H. Hyon, and Y. Ikada, "Stereocomplex formation between enantiomeric poly (lactic acids). 5. Calorimetric and morphological studies on the stereocomplex formed in acetonitrile solution," Macromolecules, vol. 25, no. 11, pp. 2940-2946, 1992.
[29]H. Tsuji and Y. Ikada, "Stereocomplex formation between enantiomeric poly (lactic acids). 9. Stereocomplexation from the melt," Macromolecules, vol. 26, no. 25, pp. 6918-6926, 1993.
[30]H. Tsuji and Y. Ikada, "Stereocomplex formation between enantiomeric poly (lactic acid) s. XI. Mechanical properties and morphology of solution-cast films," Polymer, vol. 40, no. 24, pp. 6699-6708, 1999.
[31]H. Tsuji and Y. Ikada, "Stereocomplex formation between enantiomeric poly (lactic acid) s. 6. Binary blends from copolymers," Macromolecules, vol. 25, no. 21, pp. 5719-5723, 1992.
[32]J. Shao et al., "The stereocomplex formation and phase separation of PLLA/PDLA blends with different optical purities and molecular weights," Chinese Journal of Polymer Science, vol. 33, no. 12, pp. 1713-1720, 2015.
[33]M. Avrami, "Kinetics of phase change. I General theory," The Journal of chemical physics, vol. 7, no. 12, pp. 1103-1112, 1939.
[34]M. Avrami, "Kinetics of phase change. II transformation‐time relations for random distribution of nuclei," The Journal of chemical physics, vol. 8, no. 2, pp. 212-224, 1940.
[35]M. Avrami, "Granulation, phase change, and microstructure kinetics of phase change. III," The Journal of chemical physics, vol. 9, no. 2, pp. 177-184, 1941.
[36]A. Jeziorny, "Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC," Polymer, vol. 19, no. 10, pp. 1142-1144, 1978.
[37]J. I. Lauritzen Jr and J. D. Hoffman, "Extension of theory of growth of chain‐folded polymer crystals to large undercoolings," Journal of applied Physics, vol. 44, no. 10, pp. 4340-4352, 1973.
[38]J. D. Hoffman, "Regime III crystallization in melt-crystallized polymers: the variable cluster model of chain folding," Polymer, vol. 24, no. 1, pp. 3-26, 1983.
[39]J. D. Hoffman and R. L. Miller, "Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment," Polymer, vol. 38, no. 13, pp. 3151-3212, 1997.
[40]M. Murariu, A. Da Silva Ferreira, M. Alexandre, and P. Dubois, "Polylactide (PLA) designed with desired end‐use properties: 1. PLA compositions with low molecular weight ester‐like plasticizers and related performances," Polymers for Advanced Technologies, vol. 19, no. 6, pp. 636-646, 2008.
[41]H. Tsuji and Y. Ikada, "Crystallization from the melt of poly (lactide) s with different optical purities and their blends," Macromolecular Chemistry and Physics, vol. 197, no. 10, pp. 3483-3499, 1996.
[42]J. D. Hoffman, L. J. Frolen, G. S. Ross, and J. I. Lauritzen Jr, "On the growth rate of spherulites and axialites from the melt in polyethylene fractions: regime I and regime II crystallization," Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry, vol. 79, no. 6, p. 671, 1975.
[43]P.-D. Hong, W.-T. Chung, and C.-F. Hsu, "Crystallization kinetics and morphology of poly (trimethylene terephthalate)," Polymer, vol. 43, no. 11, pp. 3335-3343, 2002.
[44]M. Fujita et al., "Stereocomplex formation through reorganization of poly (L-lactic acid) and poly (D-lactic acid) crystals," Macromolecules, vol. 41, no. 8, pp. 2852-2858, 2008.
[45]Z. Xiong et al., "Temperature dependence of crystalline transition of highly-oriented poly (L-lactide)/poly (D-lactide) blend: In-situ synchrotron X-ray scattering study," Polymer, vol. 54, no. 2, pp. 964-971, 2013.
[46]B. Na, J. Zhu, R. Lv, Y. Ju, R. Tian, and B. Chen, "Stereocomplex formation in enantiomeric polylactides by melting recrystallization of homocrystals: crystallization kinetics and crystal morphology," Macromolecules, vol. 47, no. 1, pp. 347-352, 2014.
[47]Y. Yin et al., "Formation of stereocomplex in enantiomeric poly (lactide) s via recrystallization of homocrystals: An in-situ X-ray scattering study," European Polymer Journal, vol. 82, pp. 46-56, 2016.
[48]M. Takasaki, H. Ito, and T. Kikutani, "Development of stereocomplex crystal of polylactide in high-speed melt spinning and subsequent drawing and annealing processes," Journal of Macromolecular Science, Part B, vol. 42, no. 3-4, pp. 403-420, 2003.
[49]Y. Furuhashi, Y. Kimura, N. Yoshie, and H. Yamane, "Higher-order structures and mechanical properties of stereocomplex-type poly (lactic acid) melt spun fibers," Polymer, vol. 47, no. 16, pp. 5965-5972, 2006.
[50]D. Masaki, Y. Fukui, K. Toyohara, M. Ikegame, B. Nagasaka, and H. Yamane, "Stereocomplex Formation in the Poly (L-lactic acid)/poly (D-lactic acid) Melt Blends and the Melt Spun Fibers," Sen'i Gakkaishi, vol. 64, no. 8, pp. 212-219, 2008.
[51]B. Yang et al., "Structure Mediation and Properties of Poly (l-lactide)/Poly (d-lactide) Blend Fibers," Polymers, vol. 10, no. 12, p. 1353, 2018.
[52]G. Stoclet, "Strain-induced structural evolution of poly (l-lactide) and poly (d-lactide) blends," Polymer, vol. 99, pp. 231-239, 2016.
[53]J. J. Lee, J.-C. Lee, and H. Yamane, "Stereocomplexation in the Solution Spun PLLA⁄ PDLA Blend Fibers," Sen'i Gakkaishi, vol. 66, no. 7, pp. 174-180, 2010.
[54]M. Reading, D. Elliott, and V. Hill, "A new approach to the calorimetric investigation of physical and chemical transitions," Journal of Thermal Analysis, vol. 40, no. 3, pp. 949-955, 1993.
[55]L. Chang and E. M. Woo, "A Unique Meta‐Form Structure in the Stereocomplex of Poly (d‐lactic acid) with Low‐Molecular‐Weight Poly (l‐lactic acid)," Macromolecular Chemistry and Physics, vol. 212, no. 2, pp. 125-133, 2011.
[56]Y. Li and H. Shimizu, "Toughening of polylactide by melt blending with a biodegradable poly (ether) urethane elastomer," Macromolecular bioscience, vol. 7, no. 7, pp. 921-928, 2007.
[57]M. Shibata, Y. Inoue, and M. Miyoshi, "Mechanical properties, morphology, and crystallization behavior of blends of poly (L-lactide) with poly (butylene succinate-co-L-lactate) and poly (butylene succinate)," Polymer, vol. 47, no. 10, pp. 3557-3564, 2006.
[58]L. Jiang, M. P. Wolcott, and J. Zhang, "Study of biodegradable polylactide/poly (butylene adipate-co-terephthalate) blends," Biomacromolecules, vol. 7, no. 1, pp. 199-207, 2006.
[59]T.-Y. Liu, W.-C. Lin, M.-C. Yang, and S.-Y. Chen, "Miscibility, thermal characterization and crystallization of poly (l-lactide) and poly (tetramethylene adipate-co-terephthalate) blend membranes," Polymer, vol. 46, no. 26, pp. 12586-12594, 2005.
[60]A. Pezzin, G. A. Van Ekenstein, C. Zavaglia, G. Ten Brinke, and E. Duek, "Poly (para‐dioxanone) and poly (L‐lactic acid) blends: thermal, mechanical, and morphological properties," Journal of applied polymer science, vol. 88, no. 12, pp. 2744-2755, 2003.
[61]M. Hiljanen‐Vainio, P. Varpomaa, J. Seppälä, and P. Törmälä, "Modification of poly (L‐lactides) by blending: mechanical and hydrolytic behavior," Macromolecular Chemistry and Physics, vol. 197, no. 4, pp. 1503-1523, 1996.
[62]P. Ma, A. Spoelstra, P. Schmit, and P. Lemstra, "Toughening of poly (lactic acid) by poly (β-hydroxybutyrate-co-β-hydroxyvalerate) with high β-hydroxyvalerate content," European polymer journal, vol. 49, no. 6, pp. 1523-1531, 2013.
[63]A. A. Shah, F. Hasan, A. Hameed, and S. Ahmed, "Biological degradation of plastics: a comprehensive review," Biotechnology advances, vol. 26, no. 3, pp. 246-265, 2008.
[64]T. Gerard and T. Budtova, "Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends," European polymer journal, vol. 48, no. 6, pp. 1110-1117, 2012.
[65]M. R. Nanda, M. Misra, and A. K. Mohanty, "The effects of process engineering on the performance of PLA and PHBV blends," Macromolecular Materials and Engineering, vol. 296, no. 8, pp. 719-728, 2011.
[66]S. Modi, K. Koelling, and Y. Vodovotz, "Assessing the mechanical, phase inversion, and rheological properties of poly-[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate](PHBV) blended with poly-(l-lactic acid)(PLA)," European polymer journal, vol. 49, no. 11, pp. 3681-3690, 2013.
[67]M. R. Nanda, M. Misra, and A. K. Mohanty, "Mechanical Performance of Soy‐Hull‐Reinforced Bioplastic Green Composites: A Comparison with Polypropylene Composites," Macromolecular Materials and Engineering, vol. 297, no. 2, pp. 184-194, 2012.
[68]H. Zhao, Z. Cui, X. Wang, L.-S. Turng, and X. Peng, "Processing and characterization of solid and microcellular poly (lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites," Composites Part B: Engineering, vol. 51, pp. 79-91, 2013.
[69]S. Modi, K. Koelling, and Y. Vodovotz, "Miscibility of poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) with high molecular weight poly (lactic acid) blends determined by thermal analysis," Journal of applied polymer science, vol. 124, no. 4, pp. 3074-3081, 2012.
[70]H. Zhao, Z. Cui, X. Sun, L.-S. Turng, and X. Peng, "Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends," Industrial & Engineering Chemistry Research, vol. 52, no. 7, pp. 2569-2581, 2013.
[71]I. Zembouai, M. Kaci, S. Bruzaud, A. Benhamida, Y.-M. Corre, and Y. Grohens, "A study of morphological, thermal, rheological and barrier properties of Poly (3-hydroxybutyrate-Co-3-Hydroxyvalerate)/polylactide blends prepared by melt mixing," Polymer Testing, vol. 32, no. 5, pp. 842-851, 2013.
[72]Q. Liu, C. Wu, H. Zhang, and B. Deng, "Blends of polylactide and poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) with low content of hydroxyvalerate unit: Morphology, structure, and property," Journal of Applied Polymer Science, vol. 132, no. 42, 2015.
[73]B. Ferreira, C. Zavaglia, and E. Duek, "Films of PLLA/PHBV: Thermal, morphological, and mechanical characterization," Journal of Applied Polymer Science, vol. 86, no. 11, pp. 2898-2906, 2002.
[74]R. Chandra and R. Rustgi, "Biodegradable polymers," Progress in polymer science, vol. 23, no. 7, pp. 1273-1335, 1998.
[75]F. Vilaplana, E. Strömberg, and S. Karlsson, "Environmental and resource aspects of sustainable biocomposites," Polymer Degradation and Stability, vol. 95, no. 11, pp. 2147-2161, 2010.
[76]L.-T. Lim, R. Auras, and M. Rubino, "Processing technologies for poly (lactic acid)," Progress in polymer science, vol. 33, no. 8, pp. 820-852, 2008.
[77]G. Gorrasi, R. Anastasio, L. Bassi, and R. Pantani, "Barrier properties of PLA to water vapour: Effect of temperature and morphology," Macromolecular Research, vol. 21, no. 10, pp. 1110-1117, 2013.
[78]J. Lunt, "Large-scale production, properties and commercial applications of polylactic acid polymers," Polymer degradation and stability, vol. 59, no. 1-3, pp. 145-152, 1998.
[79]R. PANTANI, F. DE SANTIS, A. SORRENTINO, F. DE MAIO, and G. TITOMANLIO, "Crystallization kinetics of virgin and processed poly (lactic acid)," Polymer degradation and stability, vol. 95, no. 7, pp. 1148-1159, 2010.
[80]S. Pilla, S. Gong, E. O'Neill, L. Yang, and R. M. Rowell, "Polylactide‐recycled wood fiber composites," Journal of Applied Polymer Science, vol. 111, no. 1, pp. 37-47, 2009.
[81] F. La Mantia, R. Scaffaro, and C. Bastioli, "Recycling of a starch‐based biodegradable polymer," in Macromolecular Symposia, 2002, vol. 180, no. 1: Wiley Online Library, pp. 133-140.
[82]J. Badia, E. Strömberg, S. Karlsson, and A. Ribes-Greus, "The role of crystalline, mobile amorphous and rigid amorphous fractions in the performance of recycled poly (ethylene terephthalate)(PET)," Polymer degradation and stability, vol. 97, no. 1, pp. 98-107, 2012.
[83]V. N. Glotova, M. K. Zamanova, A. Yarkova, D. Krutas, T. Izhenbina, and V. T. Novikov, "Influence of storage conditions on the stability of lactide," Procedia Chemistry. Vol. 10: Chemistry and Chemical Engineering in XXI century, 2014., vol. 10, pp. 252-257, 2014.
[84]S. Li and M. Vert, "Morphological changes resulting from the hydrolytic degradation of stereocopolymers derived from L-and DL-lactides," Macromolecules, vol. 27, no. 11, pp. 3107-3110, 1994.
[85]H. Tsuji, "In vitro hydrolysis of blends from enantiomeric poly (lactide) s Part 1. Well-stereo-complexed blend and non-blended films," Polymer, vol. 41, no. 10, pp. 3621-3630, 2000.
[86]H. Tsuji, "Autocatalytic hydrolysis of amorphous-made polylactides: effects of L-lactide content, tacticity, and enantiomeric polymer blending," Polymer, vol. 43, no. 6, pp. 1789-1796, 2002.
[87]H. Tsuji, "In vitro hydrolysis of blends from enantiomeric poly (lactide) s. Part 4: well-homo-crystallized blend and nonblended films," Biomaterials, vol. 24, no. 4, pp. 537-547, 2003.
[88]H. Tsuji and T. Tsuruno, "Accelerated hydrolytic degradation of poly (l-lactide)/poly (d-lactide) stereocomplex up to late stage," Polymer degradation and stability, vol. 95, no. 4, pp. 477-484, 2010.
[89]M. H. Rahaman and H. Tsuji, "Hydrolytic degradation behavior of stereo multiblock and diblock poly(lactic acid)s: Effects of block lengths," Polymer degradation and stability, vol. 98, no. 3, pp. 709-719, 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔