跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 17:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王奕翔
研究生(外文):WANG, Yi-HSIANG
論文名稱:化學促發型燃燒合成鋯-硼/矽/鋁化合物之研究
論文名稱(外文):Investigation of Zr-B/Si/Al Compounds by Combustion Synthesis with Chemical Activation
指導教授:葉俊良葉俊良引用關係
指導教授(外文):YEH,CHUN-LIANG
口試委員:葉俊良黃柏文謝宗翰
口試委員(外文):YEH,CHUN-LIANGHUANG,PO-WENSHIEH,TZONG-HANN
口試日期:2020-07-16
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航太與系統工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:86
中文關鍵詞:自持傳遞高溫合成法鋁熱反應硼化鋯矽化鋯鋯鋁介金屬X光繞射分析
外文關鍵詞:Self-propagating high-temperature synthesis (SHS)Thermite reactionZirconium boridesZirconium silicidesZirconium aluminidesXRD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由自持傳遞高溫合成法(Self-Propagating High-Temperature Synthesis, SHS)結合鋁熱反應,於氬氣環境下進行燃燒合成鋯-硼/矽/鋁化合物之複合材料,並針對實驗分別探討火焰鋒面傳遞模式、火焰鋒面傳遞速度、燃燒溫度、產物成分分析及產物微結構觀察。由於實驗以放熱量較低的鋁熱劑進行反應,因此額外添加PTFE (Polytetrafluoroethylene),PTFE作為促發劑可使放熱量較低的鋁熱還原反應進行自持性燃燒合成,PTFE中的C和F2均會參與反應。
實驗以產物區分成三大部分,第一部分實驗又分成兩組,第一組為使用ZrO2/SiO2/Al做為鋁熱劑,第二組利用ZrSiO4取代部分ZrO2/SiO2,並於兩組中使用B4C作為硼與碳的來源以及額外放熱源,以此合成ZrB2/SiC/Al2O3複合材料。此實驗透過提升ZrO2/B與SiO2/C含量,以此改變產物中ZrB2與SiC之莫耳比例。從實驗結果顯示,隨著反應中ZrO2與SiO2增加,理論上整體反應之放熱量與絕熱溫度上升,但實際反應則因還原不完全,而造成燃燒溫度與速度有降低之趨勢。產物方面,ZrB2/SiC/Al2O3之複合材料,隨著ZrB2與SiC含量上升,會因還原不完全出現ZrO2和SiO2的殘留。
第二部分的實驗裡,為合成矽化鋯(Zr-Si)/Al2O3之複合材料,合成目標之矽化鋯相包含ZrSi2、ZrSi與Zr5Si3,實驗以ZrSiO4為主要氧化劑,透過添加Si與ZrO2,藉以改變矽化鋯生成相,並與以ZrO2為主要氧化劑之反應進行比較。從實驗結果顯示,增加Al含量會使燃燒速度有所提升;在產物分析方面,Zr5Si3在此系統中無法生成,主要原因可能由於燃燒溫度不夠所導致;在合成ZrSi2和ZrSi系列中皆有ZrO2的殘留,可分別透過增加25%與50%Al含量使還原更完全。
第三部分的實驗裡,目標為合成鋯鋁介金屬(Zr-Al)/ZrC/Al2O3與Zr-Al/ZrC/ZrB2/Al2O3複合材料,於實驗中使用ZrO2並通過增加Al含量,以此改變鋯鋁介金屬生成相,介金屬生成相包含ZrAl、ZrAl2與ZrAl3。實驗結果顯示,增加Al含量會使燃燒速度有所提升,但燃燒溫度無明顯變化;在產物分析方面,ZrAl在此系統中無法生成,而ZrAl2和ZrAl3可透過增加10 %的Al使產物有較佳的合成效果。

This research combined self-propagating high-temperature synthesis (SHS) with thermite reaction to fabricate zirconium-containing borides, silicides, and aluminides through solid-phase combustion in an argon environment. Experimental variables including the propagation mode of self-sustaining combustion, combustion wave velocity and temperature, phase composition, and microstructure of the products were investigated. Because this study adopted low-exothermic thermite reagents, PTFE (Polytetrafluoroethylene) was used as a reaction activator to trigger combustion reaction. It is believed that carbon (C) and fluorine (F2) decomposed from PTFE participated in the synthesis reaction.
This work was summarized and presented according to three different zirconium-based compounds. Part I of this study conducted two series of the experiments to synthesize ZrB2/SiC/Al2O3 composites. One adopted ZrO2/SiO2/Al as the thermite reagents to mix with B4C and boron (B) or carbon, and the other utilized ZrSiO4 to replace a portion of ZrO2 and SiO2. With the increase of ZrO2/B and SiO2/C contents in the reactants, ZrB2 and SiC formed in the composites were augmented, respectively. Although the reaction enthalpy and adiabatic combustion temperature increased with ZrO2/B and SiO2/C contents, experimental results showed a decrease in combustion velocity and temperature. This was attributed to incomplete reduction of ZrO2 and SiO2 when large fractions of ZrB2 and SiC were produced.
Part II of this study was to fabricate zirconium silicides/Al2O3 composites. The silicide phases including ZrSi2, ZrSi, and Zr5Si3 were examined with different Si contents in the reactant mixtures. Thermite reagents adopted ZrSiO4 and ZrO2 as the oxidants. Experimental results indicated that excess Al of 25% and 50% enhanced reduction of ZrO2, increased the combustion velocity, and improved the formation of ZrSi2 and ZrSi. It should be noted that no formation of Zr5Si3 was observed, due possibly to the low combustion temperature.
Part III of the present work aimed to prepare composites containing zirconium aluminides reinforced with ZrC/Al2O3 and ZrC/ZrB2/Al2O3. The raw materials consisted of ZrO2, Al, C and/or B4C. Aluminide phases included ZrAl, ZrAl2, and ZrAl3. Experimental results showed that excess Al accelerated the combustion wave, but had almost no effect on combustion temperature. Based on the composition analysis, it was found that the ZrAl phase cannot be formed, but the formation of ZrAl2 and ZrAl3 was improved by adding extra Al of 10%.

誌  謝 i
摘  要 ii
ABSTRACT iv
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.2.1 鋯金屬陶瓷材料 2
1.2.2 鋯鋁介金屬 3
1.2.3 自持傳遞高溫合成法 4
1.2.4 鋁熱還原反應 6
1.2.5 鐵氟龍(PTFE) -燃燒合成促進劑 7
1.3 研究目的 8
第二章 實驗方法 11
2.1 合成硼化鋯/碳化矽/氧化鋁複合材料 12
2.2 合成矽化鋯/氧化鋁複合材料 13
2.3 合成鋯鋁介金屬/陶瓷複合材料 14
2.4 實驗裝置與資料擷取系統 15
2.5 實驗產物分析 17
第三章 結果與討論 19
3.1 合成硼化鋯/碳化矽/氧化鋁複合材料 19
3.1.1 固相火焰觀察 19
3.1.2 火焰鋒面速度與溫度量測 20
3.1.3 產物分析與微結構觀察 21
3.2 合成矽化鋯-氧化鋁複合材料 25
3.2.1 固相火焰觀察 25
3.2.2 火焰鋒面速度與溫度量測 25
3.2.3 產物分析與微結構觀察 27
3.3 合成鋯鋁介金屬/氧化鋁複合材料 30
3.3.1 固相火焰觀察 30
3.3.2 火焰鋒面速度與溫度量測 30
3.3.3 產物分析與微結構觀察 31
第四章 結論 34
參考文獻 36


[1]劉顯光, 許明發, “複合材料”,全威圖書有限公司,2001。
[2]C. Monticelli, F. Zucchi, A. Pagnoni, M.D. Colle, Corrosion of a zirconium diboride/silicon carbide composite in aqueous solutions, Electrochimica Acta, 50, 3461-3469, 2005.
[3]J. She, Y.Z. Zhan, M. j. Pang, C.L. Li, W.C. Yang, In situ synthesized (ZrB2 + ZrC) hybrid short fibers reinforced Zr matrix composites for nuclear applications, International Journal of Refractory Metals and Hard Materials, 29, 401-404, 2011.
[4]M.M. Nasseri, Comparison of HfB2 and ZrB2 Behaviors for using in nuclear industry, Annals of Nuclear Energy, 114, 603-606, 2018.
[5]H.E. Çamurlu, F. Maglia, Preparation of nano-size ZrB2 powder by self-propagating high-temperature synthesis, Journal of European Ceramic Society, 29, 1501-1506, 2009.
[6]W.G. Fahrenholtz, Thermodynamic analysis of ZrB2–SiC oxidation: formation of a SiC‐depleted region, Journal of American Ceramic Society, 90, 143-148, 2007.
[7]N.S. Stoloff, An overview of powder processing of silicides and their composites, Materials Science and Engineering: A, 261, 169-180, 1999.
[8]R. Scholl, A. Bohm, B. Kieback, Fabrication of silicide materials and their composites by reaction sintering, Materials Science and Engineering: A, 261, 204-211, 1999.
[9]J.J. Petrovic, A.K. Vasudevan, Key developments in high temperature structural silicides, Materials Science and Engineering: A, 261, 1-5, 1999.
[10]S.J. Mu, J.T. Lue, I.C. Wu, Microstructure and ellipsometry studies of vanadium, zirconium and cobalt silicides, Journal of Physics and Chemistry of Solids, 49, 1389-1395, 1988.
[11]J.H. Park, K.S. Nam, B.S. Lee, W.B. Kim, I.J. Shon, High frequency induction heated synthesis and consolidation of nanostructured ZrSi2from mechanically activated (Zr+2Si) powders, Journal of Ceramic Processing Research, 10, 85-89, 2009.
[12]E.G. Rochow Jr., J.C. Bailar Jr., H.J. Emeléus, R. Nyholm, A.F. Trot-man-Dickenson (Eds.), Comprehensive inorganic chemistry, 1, Perg-amon Press, Oxford, 1973.
[13]A. Franciosi, V.L. Moruzzi, Bonding in metal disilicides CaSi2 through NiSi2: experiment and theory, Physical Review B, 29, 3293-3295, 1984.
[14]J. Canel, J. Zaman, J. Bettembourg, M.L. Flem, S. Poissonnet, Composite zirconium silicides through an in situ process, International Journal of Applied Ceramic Technology, 3, 23-31, 2006.
[15]X. Wu, Review of alloy and process development of TiAl alloys, Intermetallics, 1114-1122, 2006.
[16]E.M. Hunt, K.B. Plantier, M.L. Pantoya, Nano-scale reactants in the self-propagating high-temperature synthesis of nickel aluminide, Acta Materialia, 3183-3191, 2004.
[17]A. Pramanik, L.C.Zhang, J.A.Arsecularatne, Prediction of cutting forces in machining of metal matrix composites, International Journal of Machine Tools and Manufacture, 46, 1795-1803, 2006.
[18]J. Zhang, A.T. Alpas, Wear regimes and transitions in Al2O3 particulate-reinforced aluminum alloys, Materials Science Engineering: A, 273-284, 1993.
[19]A. Vencl, I. Bobic, S. Arostegui, B. Bobic, Structural, mechanical and tribological properties of A356 aluminium alloy reinforced with Al2O3, SiC and SiC+ graphite particles, Journal of Alloys Compounds, 631-639, 2010.
[20]B. Srinivasarao, C. Suryanarayana, K. Oh-ishi, K. Hono, Microstructure and mechanical properties of Al-Zr nanocomposite materials, Materials Science Engineering: A, 518, 100-107, 2009.
[21]C. Rodríguez, F.J. Belzunce, C. Betegón, L. Goyos, L.A. Díaz, R. Torrecillas, Nanostructured Al-ZrAl3 materials consolidated via spark plasma sintering: evaluation of their mechanical properties, Journal of Alloys Compounds, 550, 402-405, 2013.
[22]A.G. Merzhanov, History and recent developments in shs, Ceramics International, 21, 371-379, 1995.
[23]H. Kawano, T. Takahashi, Y. Tagashira, H. Mine, M. Moriyama, Work function of refractory metals and its dependence upon working conditions, Applied Surface Science, 146, 105-108, 1999.
[24]A.G. Merzhanov, 40 years of shs a lucky star of a scientific discovery, Bentham eBooks, Russia, 2012.
[25]L.L. Wang, Z.A. Munir, Y.M. Maximov, Review thermite reactions: their utilization in the synthesis and processing of materials, Journal of Materials Science, 28, 3693-3708, 1993.
[26]A. Maleki, M. Panjepour, B. Niroumand, M. Meratian, Mechanism of zinc oxide–aluminum aluminothermic reaction, Journal of Materials Science, 45, 5574-5580, 2010.
[27]S. Hasani, M. Panjepour, M. Shamanian, The oxidation mechanism of pure aluminum powder particles, Oxidation Metals, 78, 179-195, 2012.
[28]Z.I. Zaki, Combustion synthesis of mullite-carbon nanofiber suspensions for atmospheric plasma spraying coating, Journal of European Ceramic Society, 34, 475-483, 2014.
[29]T.R. Sippel, T.S. Son, L.R. GrovenAltering reactivity of aluminium with selective inclusion of polytetrafluoroethylene through mechanical activation, Propellants Explosives Pyrotechnics, 68, 286-295, 2013.
[30]T.R. Sippel, T.S. Son, L.R. Groven, S. Zhang, E.L. Dreizin, Aluminium agglomeration reduction in a composite propellant using tailored Al/PTFE particles, Combustion Flames, 162, 846-854, 2014.
[31]D.T. Osborne, M.L. Pantoya effect of Al particle size on the thermal degradation of Al/teflon mixtures, Combustion Science and Technology, 179, 1467-1480, 2007.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊