(44.192.112.123) 您好!臺灣時間:2021/03/04 05:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱琨皓
研究生(外文):CIOU,KUN-HAO
論文名稱:非均勻縱列雙橋墩沖刷防治之研究
論文名稱(外文):Pier Scour Prevention and Control of Two Non-uniform Circular Piers in Streamwise Direction
指導教授:王傳益
指導教授(外文):WANG,CHUAN-YI
口試委員:陳正炎許盈松
口試委員(外文):CHEN,JEN-YANSYU,YING-SONG
口試日期:2020-06-29
學位類別:碩士
校院名稱:逢甲大學
系所名稱:水利工程與資源保育學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:135
中文關鍵詞:非均勻縱列雙橋墩變量流沖刷深度減緩率安全度
外文關鍵詞:streamwise consecutive non-uniform double-bridge pierunsteady flowsscour depth reduction ratesecurity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:20
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用水工試驗模擬非均勻縱列雙橋墩於二種不同間距(Ld=1.25D*及3D*)在中峰型變量流流況下,改變十一種覆土高度進行試驗。針對其中三種覆土高度(Y/D*=0.2、0、-0.2)進行四種不同間距(Ld=1.25D*、2D*、3D*及4D*)及三種變量流流況(前峰型、中峰型及後峰型),除了分析上下游縱列雙橋墩的最大沖刷深度與沖刷深度減緩率外,並針對雙橋墩不均勻面高度差產生的沖淤歷程變化加以探討,以獲致較理想縱列雙橋墩的配置模式。
在四種不同橋墩間距情況下,上游及下游橋墩墩前最大沖刷深度,均以均勻橋墩為最深,乃因均勻橋墩迎水面寬度較大,產生較大強度之向下射流,加上無不均勻面之保護,因此造成沖刷深度較深。雖因非均勻橋墩的不均勻面位置不同,會產生不同的沖刷深度,但其深度均較均勻橋墩來得小,因為其具有不均勻面,而不均勻面能有效減緩向下射流的強度所致。
於三種變量流作用下,縱列雙橋墩的安全度隨著橋墩間距的增大而有增高的趨勢,其中以橋墩間距為4D*時之安全度為最高,因為橋墩基礎上方同時有不均勻面及覆土的保護,能有效減緩沖刷能量及阻擋向下射流,因此大幅度的降低橋墩沖刷深度。研究結果顯示覆土高度與不均勻面為橋墩基礎之重要保護措施。整體而言,當橋墩基礎為未裸露時(Y=0.2D*)且橋墩間距為4D*時為最理想非均勻縱列雙橋墩的配置模式。

The research uses hydraulic models simulation to streamwise consecutive non-uniform double-bridge pier in two different spacing (Ld =1.25D*, 3D*) under unsteady flow with central peak hydrographs and various of eleven initial bed levels in the experimental design. For three initial bed levels (Y/D* =0.2, 0, -0.2) conduct four different spacing (Ld =1.25D*, 2D*, 3D*, 4D*) and three unsteady flow conditions (advanced peak hydrographs, central peak hydrographs, and backward peak hydrographs), in addition to analyzing the maximum scouring depth and the scour depth reduction rate of the upstream and downstream consecutive double-bridge pier, and to discuss scouring and silting change with time resulting from the uneven surface height difference of the double-bridge pier is to obtain a better configuration mode.
In the case of four different pier spacing, the maximum scouring depth in front of the upstream and downstream piers is to be the deepest of the uniform bridge piers. Due to the pier facing the water width is larger, resulting in a larger intensity of the downward jet, coupled with no uneven surface protection, resulting in a deeper depth of scouring. Although different scouring depths are produced due to the uneven surface position of the non-uniform pier, it is smaller than the uniform pier, because it has an uneven surface, and the uneven surface can effectively slow down the intensity of the downward jet.
The security of consecutive double-bridge pier is increasing with the increase of pier spacing under the action of three unsteady flows, which is the highest safety when the pier spacing is 4D*. Due to the pier foundation has uneven surface and soil cover protection at the same time, can effectively reduce the scouring energy and block down the jet flow, so a substantial reduction of the pier scouring depth. The results show that the soil cover height and uneven surface are important protective measures for the pier foundation. On the whole, the optimal configuration mode for streamwise consecutive double-bridge pier when the foundation of the pier is unexposed (Y = 0.2D*) and the pier spacing is 4D*.

謝誌 I
摘要 II
ABSTRACT III
目錄 V
表目錄 VIII
圖目錄 IX
照片目錄 XII
符號表 XIII
第一章 前言 1
1.1研究動機 1
1.2研究目的 2
1.3內容架構 3
第二章 文獻回顧 4
2.1沖刷之分類 4
2.2橋墩周圍局部沖刷機制 6
2.3等效橋墩 8
2.4均勻橋墩沖刷 11
2.5非均勻橋墩沖刷 15
2.6橋墩沖刷因子 22
2.6.1橋墩沖刷因子之分類 22
2.6.2橋墩沖刷因子之探討 22
第三章 理論分析 40
3.1圓柱型橋墩周圍之流況 40
3.2橋墩周圍局部沖刷之過程 43
3.3因次分析 46
第四章 水工試驗 49
4.1試驗設備與佈置 49
4.1.1試驗渠槽 49
4.1.2試驗儀器 50
4.1.3試驗橋墩模型 52
4.1.4覆土高度 56
4.1.5試驗佈置 56
4.2橋墩模型與原型之比例關係 57
4.3試驗規劃 59
4.3.1試驗河床質 59
4.3.2試驗流量 59
4.3.3相對水流強度 61
4.3.4完全發展段 62
4.3.5平衡沖刷檢定 63
4.3.6渠槽試驗條件 64
4.4試驗步驟 66
4.4.1試驗橋墩模型安置與底床質鋪設 66
4.4.2試驗流量控制 67
4.4.3沖刷深度與河床剖面量測 67
4.4.4試驗操作程序 68
第五章 結果分析與討論 70
5.1橋墩沖刷型態 70
5.2上游橋墩墩前沖刷歷程之探討 72
5.2.1橋墩基礎不均勻面於高度差之沖刷歷程(Hy=0D*) 72
5.2.2橋墩基礎不均勻面於高度差之沖刷歷程(Hy=±0.2D*) 74
5.2.3橋墩基礎不均勻面於高度差之沖刷歷程(Hy=±0.4D*) 75
5.2.4上下橋墩基礎覆土高(0.2D*,0.2D*)之三種峰型沖刷歷程 76
5.3沖刷坑與淤積堆之縱斷面變化 80
5.3.1橋墩基礎不均勻面高度差(Hy=0D*) 80
5.3.2橋墩基礎不均勻面高度差(Hy=0.2D*) 84
5.3.3橋墩基礎不均勻面高度差(Hy=-0.2D*) 86
5.3.4橋墩基礎不均勻面高度差(Hy=0.4D*) 89
5.3.5橋墩基礎不均勻面高度差(Hy=-0.4D*) 90
5.4橋墩間距與沖刷深度之關係 93
5.5覆土高、不均勻面及橋墩間距之綜合分析 98
5.5.1覆土高 98
5.5.2不均勻面 99
5.5.3橋墩間距 100
5.6沖刷深度減緩率及安全度之綜合分析 103
第六章 結論與建議 109
6.1結論 109
6.2建議 112
參考文獻 113

1.交通部公路總局委託研究計畫,2003,「河川橋梁沖刷並補強後之安全評估」。
2.李俊穎,2005,「歷線型流況下同心圓局部沖刷之研究」,逢甲大學水利工程研究所碩士論文。
3.李翊嘉,2007,「定量流流況下不均勻圓柱形上下游連續橋墩局部沖刷之研究」,逢甲大學水利工程研究所碩士論文。
4.周憲德、吳沛倫、王新貴、張藝馨,2002,「裸露圓柱橋基之局部沖刷分析」,中國土木水利工程學刊,第十四卷,第四期,第631~640頁。
5.林呈,1998,「台灣西部重要河川橋梁橋基災害分析與橋基保護工法資料庫系統之建立」,交通部公路總局委託研究計畫。
6.林景輝,1993,「圓柱型橋墩周圍局部沖刷之研究」,逢甲大學土木及水利工程研究所碩士論文。
7.張文鎰,2002,「圓形橋墩局部沖刷之模擬與試驗驗證」,台灣大學土木工程研究所博士論文。
8.張藝馨,2000,「不均勻圓形橋墩之局部沖刷研究」,中央大學土木工程研究所碩士論文,第2~5頁。
9.陳啟宏,2005,「以最小平方有限元素法探討雙橋墩流場變化」,國立中原大學土木工程研究所碩士論文,第57~92頁。
10.程仕帆,2003,「保護工法對減少橋墩局部沖刷之研究」,中央大學土木工程研究所碩士論文。
11.陳湘婷,2017,「定量流非均勻橋墩於橋墩沖刷防治之研究」,逢甲大學水利工程研究所碩士論文。
12.陸浩、高冬光,1991,「橋梁水力學」,人民交通出版社,第167~184頁。
13.彭明正,2008,「變量流作用下非均勻橋墩之局部沖刷量測與模擬」,國立中興大學土木工程研究所碩士論文。
14.黃奕超,2008,「變量流流況下非均勻縱列雙橋墩局部沖刷之研究」,逢甲大學水利工程研究所碩士論文。
15.蔡岳臻,2006,「變量流歷線作用下非均勻同心圓柱型橋墩局部沖刷之研究」,逢甲大學水利工程研究所碩士論文。
16.鄭人豪,2007,「變量流流況下非同心圓柱型橋墩局部沖刷之研究」,逢甲大學水利工程研究所碩士論文。
17.鄭暐曦,2005,「變量流流況下非均勻圓柱型橋墩局部沖刷之研究」,中興大學土木工程研究所碩士論文。
18.Baker, C. J., (1980). “Theoretical Approach to Predication of Local Scour around Bridge Piers.” Journal of Hydraulic Research, Vol.18, No.1, pp.1-12.
19.Batuca, D., and B. Dargahi, (1986). “Some Experimental Results on Local Scour around Cylindrical Piers for Open and Covered Flows.” 3rd International Symposium on River Sedimentation, April, pp.1095-1104.
20.Breusers, H. N. C., and A. J. Raudkivi, (1991). “Scouring.” IAHR, Hydraulic Structure Design Manual, Vol.2, Belkema, pp.84-87.
21.Chabert, J., and P. Engeldinger, (1956). “Etude Des Affouillements Author Des Piles Des Ponts.” Laboratoire National d’Hydraulique, Chatou.
22.Dargahi, B., (1990). “Controlling Mechanism of Local Scouring.” Journal of Hydraulic Engineering, ASCE, Vol.116, No.10, pp.1197-1214.
23.Dey S., (1999). “Time-variation of Scour in the Vicinity of Circular Piers.” Proc Instn Civ. Engrs Wat., Marit. and Energy, Vol.136, pp67-75.
24.Imamoto, H., and K. Ohtoshi, (1987). “Local Scour around a Non-uniform Circular Pier.” Proc., IAHR Congress, Lausanne, Switzerland, pp.304-309.
25.Jain, S. C., and E. E. Fischer, (1980). “Scour around Bridge Piers at High Velocity.” Journal of Hydraulic Engineering, ASCE, Vol.106, No.11, pp.1827-1842.
26.Jau-Yau, L., Zhong-Zhi, S., Jian-Hao, H., Jun-Ji, L., and V. R. Rajkumar, (2011). “Temporal Variation of Scour Depth at Nonuniform Cylindrical Piers.” Journal of Hydraulic Engineering, ASCE, Vol.137, No.1, pp.45-56.
27.Jones J. S., Kilgore R. T., and M. P. Mistichelli, (1992). “Effects of Footing Location on Bridge Pier.” Journal of Hydraulic Engineering, ASCE, Vol.118, No.2, pp.280-290.
28.Umesh, C. Kothyari and Ashish Kumar, (2012). “Temporal Variation of Scour around Circular Compound Piers.” Journal of Hydraulic Engineering, ASCE, Vol.138, No.11, pp.945-957.
29.Laursen, E. M., (1962). “Scour at Bridge Crossings.” Journal of the Hydraulic Division, ASCE, Vol.86, No.2, February, pp.39-54.
30.Moreno, M., Maia, R., and L. Couto, (2016). “Effects of Relative Column Width and Pile-Cap Elevation on Local Scour Depth around Complex Piers.” Journal of Hydraulic Engineering, ASCE, Vol.142, No.2, pp.04015051-1~04015051-9.
31.Melville, B. W., and A. J. Raudkivi, (1977). “Flow Characteristics in Local Scour at Bridge Piers.” Journal of Hydraulic Research, Vol.15, No.4, pp.373-380.
32.Melville, B. W., and A. J. Sutherland, (1988). “Design Method for Local Scour at Bridge Piers.” Journal of Hydraulic Engineering, ASCE, Vol.114, No.10, pp.1210-1226.
33.Melville, B. W., (1997). “Pier and Abutment Scour: Intergrated Approach.” Journal of Hydraulic Engineering, ASCE, Vol.123, No.2, pp.125-136.
34.Melville, B. W., and A. J. Raudkivi, (1996). “Effects of Foundation Geometry on Bridge Pier Scour.” Journal of Hydraulic Engineering, pp.203-209.
35.Melville, B. W., and Y. M. Chiew, (1999). “Time scale for Local Scour at Bridge Piers.” Journal of Hydraulic Engineering, ASCE, Vol.125, No.1, pp.59-65.
36.Melville, B. W., and S. E. Coleman, (2000). “Bridge Scour.” Water Resources Publications, LLC, Highlands Ranch, Colorado, USA.
37.Raudkivi, A. J., and R. Ettema, (1977). “Effect of Sediment Gradation on Clear Water Scour.” Journal of Hydraulic Engineering, ASCE, Vol.109, No.3, pp.338-349.
38.Raudkivi, A. J., and R. Ettema, (1983). “Clear-Water Scour at Cylindrical Piers.” Journal of Hydraulic Engineering, ASCE, Vol.111, No.4, April, pp.713-731.
39.Raudkivi, A. J., (1986). “Functional Trends of Scour at Bridge Piers.” Journal of Hydraulic Engineering, ASCE, Vol.112, No.1, January, pp.1-13.
40.Shen, H. W., Schneider, V. R., and S. Karaki, (1969). “Local Scour around Bridge Piers.” Journal of Hydraulic Engineering, ASCE, Vol.95, No.6 , pp.1919-1940.
41.Yanmaz, A. M. and H. D. Attinbilek, (1991). “Study of Time-Dependent Local Scour around Bridge Piers.” Journal of Hydraulic Engineering, ASCE, Vol.117, No.10, pp.1247-1268.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔