|
[1] M. S. Adler, D. N. Pattanayak, B. J. Baliga, V. A. K. Temple, and H. R. Chang (1987). Device physics and modeling of integrated power de-vices, Proc. of NASECODE V, 1-18. [2] B. J. Baliga (1991). An overview of smart power technology, IEEE Trans. Electron Devices, 38 (7), 1568-1575. [3] B. J. Baliga (1994). Power semiconductor devices for variable fre-quency drives. Proc. of IEEE, 82 (8), 1112-1122. [4] B. J. Baliga (1996). Trends in power semiconductor devices, IEEE Trans. Electron Devices, 43 (10), 1717-1731. [5] B. J. Baliga (2001). The future of power semiconductor device tech-nology, Proc. of IEEE, 89 (6), 822-832. [6] W. Zhang, B. Zhang, M. Qiao, L. Wu, K. Mao, and Z. Li (2014). A novel vertical field plate lateral device with ultralow specific on-resistance, IEEE Trans. Electron Devices, 61 (2), 518-524. [7] R. K. Williams, M. N. Darwish, R. A. Blanchard, R. Siemieniec, P. Rutter, and Y. Kawaguchi (2017). The trench power MOSFET: part I—history, technology, and prospects, IEEE Trans. Electron Devices, 64 (3), 674-691. [8] R. K. Williams, M. N. Darwish, R. A. Blanchard, R. Siemieniec, P. Rutter, and Y. Kawaguchi (2017). The trench power MOSFET—part II: application specific VDMOS, LDMOS, packaging, and reliability, IEEE Trans. Electron Devices, 64 (3), 692-712. [9] W. Zhang, L. Ye, D. Fang, M. Qizo, K. Xizo, B. He, Z. Li, and B. Zhang (2019). Model and experiments of small-size vertical devices with field plate, IEEE Trans. Electron Devices, 66 (3), 1416-1421. [10] L. Chen, O. J. Guy, M. R. Jennings, P. Igic, S. P. Wilks, and P. A. Mawby (2005). Study of 4H-SiC trench MOSFET structures, Solid-State Electron, 49 (7), 1081-1085. [11] J. W. Palmour, L. Cheng, V. Pala, E. V. Brunt, D. J. Lichtenwalner, G-Y Wang, J. Richmond, M. O′Loughlin, S. Ryu, S. T. Allen, and A. A. Burk (2014). Silicon carbide power MOSFETs: breakthrough performance from 900 V up to 15 kV, Proc. of ISPSD’26, 79-82. [12] A. M. S. Al-bayati, S. S. Alharbi, S. S. Alharbi, and M. Matin (2017). A comparative design and performance study of a non-isolated DC-DC buck converter based on Si-MOSFET/Si-diode, SiC-JFET/SiC-schottky diode, and GaN-transistor/SiC-Schottky diode power devices, Proc. of 2017 North American Power Symp.. [13] X. Li, X. Tong, A. Q. Huang, H. Tao, K. Zhou, Y. F. Jiang, J. N. Jiang, X. C. Deng, X. She, B. Zhang, Y. Zhang, and T. Qi (2018). SiC trench MOSFET with integrated self-assembled three-level protection schottky barrier diode, IEEE Trans. Electron Devices, 65 (1), 347-351. [14] K. Tian, A. Hallén, J. Qi, S. Ma, X. Fei, A. Zhang, and W. Liu (2019). An improved 4H-SiC trench-gate MOSFET with low on-resistance and switching loss, IEEE Trans. Electron Devices, 66 (5), 2307-2313. [15] H. Takaya, J. Morimoto, K. Hamada, T. Yamamoto, J. Sakakibara, Y. Watanabe, and N. Soejima (2013). A 4H-SiC trench MOSFET with thick bottom oxide for improving characteristics, Proc. of ISPSD’25, 43-46. [16] M. Darwish, C. Yue, K. H. Lui, F. Giles, B. Chan, K.i. Chen, D. Pattanayak, Q. Chen, K. Terrill, and K. Owyang (2003). A new power W-gated trench MOSFET (WMOSFET) with high switching performance, Proc. of ISPSD’15, 24-27. [17] M. A. Gajda, S. W. Hodgkiss, L. A. Mounfield, N. T. Irwin, G. E. J. Koops, and R. V. Dalen (2006). Industrialisation of resurf stepped oxide technology for power transistors, Proc. of ISPSD’18, 109-112. [18] Koops, Hijzen, Hueting, and I. Zandt (2006). RESURF stepped oxide (RSO)MOSFET for 85V having a record-low specific on-resistance, Proc. of ISPSD’18, 185-188. [19] B. J. Baliga (1999). Power semiconductor devices having improved high frequency switching and breakdown characteristics, U.S. Patent 5998833. [20] J. Zeng (2004). Ultra dense trench-gated power device with the reduced drain-source feedback capacitance and Miller charge, U.S. Patent 6683346. [21] P. Goarin, G. E. J. Koops, R. van Dalen, C. L. Cam, and J. Saby (2007). Split-gate resurf oxide (RSO) MOSFETs for 25V applications with record low gate-to-drain charge, Proc. of ISPSD’19, 61-64. [22] K. Vershinin, P. Moens, F. Bauwens, E. M. S. Narayanan, and M. Tack (2009). A new method to improve tradeoff performance for advanced power MOSFETs, IEEE Electron Device Lett., 30 (4), 416-418. [23] K. Kobayashi, M. Sudo, and I. Omura (2018). Power loss analysis of 60 V trench field-plate MOSFETs utilizing structure based capacitance model for automotive application, Proc. of CIPS 2018, 122-127. [24] K. Kobayashi, M. Sudo, and I. Omura (2018). Structure-based capacitance modeling and power loss analysis for the latest high-performance slant field-plate trench MOSFET, Proc. of Jpn. J. Appl. Phys, 1-8. [25] S. T. Peake, P. Rutter, S. Hodgskiss, M. Gajda, and N. Irwin (2008). A fully realized ‘field balanced’ trenchMOS technology, Proc. of ISPSD’20, 28-31. [26] Y. Wang, H. F. Hu, Z. Dou, and C. H. Yu (2014). Way of operation to improve performance for advanced split-gate resurf stepped oxide UMOSFET, IET Power Electron., 7 (12), 2964-2968. [27] 鄧傑文 (2015). V-grooved edge termination design for high voltage VDMOSFET. 東海大學電機工程學系, Taiwan. [28] M. L. Tarng (1981). On-resistance characterization of VDMOS power transistors, Proc. of IEDM 1981, 429-433. [29] 簡鳳佐 (2014)。功率金氧半電晶體(Power MOSFET)之簡介,台灣電子材料與元件協會 功率電子專刊I,20 (1),5-20。 [30] R. S. Saxena and M. J. Kumar (2012). Polysilicon spacer gate technique to reduce gate charge of a trench power MOSFET, IEEE Trans. Electron Devices, 59 (3), 738-744. [31] R. J. E. Hueting, E. A. Hijzen, A. Heringa, A. W. Ludikhuize, and M. A. A. Zandt (2004). Gate-drain charge analysis for switching in power trench MOSFETs, IEEE Trans. Electron Devices, 51 (8)1323-1330. [32] C. Park, S. Havanur, A. Shibib, and K. Terrill (2016). 60 V rating split gate trench MOSFETs having best-in-class specific resistance and figure-of-merit, Proc. of ISPSD’28, 387-390. [33] H. Takaya, K. Miyagi, K. Hamada, Y. Okura, N. Tokura, and A. Kuroyanagi (2005). Floating island and thick bottom oxide trench gate MOSFET (FITMOS)-a 60V ultra low on-resistance novel MOSFET with superior internal body diode, Proc. of ISPSD’17, 1-4. [34] Y. Chen, Y. C. Liang, and G. S. Samudra (2007). Design of gradient oxide-bypassed superjunction power MOSFET devices, IEEE Trans. Power Electronics, 22 (4), 1303-1310. [35] K. Kobayashi, H. Kato, T. Nishiguchi, S. Shimomura, T. Ohno, T. Nishiwaki, K. Aida, K. Ichinoseki, K. Oasa, and Y. Kawaguchi (2019). 100-V class two-step-oxide field-plate trench MOSFET to achieve optimum RESURF effect and ultralow on-resistance, Proc. of ISPSD’31, 99-102. [36] K. Kobayashi, T. Nishiguchi, S. Katoh, T. Kawano, and Y. Kawaguchi (2015). 100 V class multiple stepped oxide field plate trench MOSFET (MSO-FP-MOSFET) aimed to ultimate structure realization, Proc. of ISPSD’27, 141-144. [37] C. Park, M. Azam, G. Dengel, A. Shibib, and K. Terrill (2019). A new 200 V dual trench MOSFET with stepped oxide for ultra low RDS(on), Proc. of ISPSD’31, 95-98. [38] B. J. Daniel, C. D. Parikh, and M. B. Patil (2002). Modeling of the coolMOS/sup TM/ transistor - part I: device physics, IEEE Trans. Electron Devices, 49 (5), 916-922. [39] L. Lorenz, G. Deboy, A. Knapp, and M. Marz (1999). COOLMOS/sup TM/-a new milestone in high voltage power MOS, Proc. of ISPSD’11, 3-10. [40] P. N. Kondekar, C. D. Parikh, and M. B. Patil (2002). Analysis of breakdown voltage and on resistance of super junction power MOSFET CoolMOS/sup TM/ using theory of novel voltage sustaining layer, Proc. of PESC’33, 1769-1775. [41] Q. Wang, M. Li, J. Sharp, and A. Challa (2007). The effects of double-epilayer structure on threshold voltage of ultralow voltage trench power MOSFET devices, IEEE Trans. Electron Devices, 54 (4), 833-839. [42] M. Li, A. Crellin, I. Ho, and Q. Wang (2008). Double-epilayer structure for low drain voltage rating n-channel power trench MOSFET devices, IEEE Trans. Electron Devices, 55 (7), 1749-1755. [43] B. J. Daniel, C. D. Parikh, and M. B. Patil (2002). Modeling of the coolMOS/sup TM/ transistor—Part I: Device physics, IEEE Trans. Electron. Devices, 49 (5), 916-922. [44] H. Yamaguchi, Y. Urakami, and J. Sakakibara (2006). Breakthrough of on-resistance Si limit by Super 3D MOSFET under 100V breakdown voltage, Proc. of ISPSD’18. [45] Y. Hattori, K. Nakashima, M. Kuwahara, T. Yoshida, S. Yamauchi, and H. Yamaguchi (2004). Design of a 200V super junction MOSFET with n-buffer regions and its fabrication by trench filling, Proc. of ISPSD’16, 189-192. [46] Y. Weber, F. Morancho, J. Reynes, and E. Stefanov (2008). A new optimized 200V low on-resistance power FLYMOSFET, Proc. of ISPSD’20, 149-152. [47] Y. Miura, H. Ninomiya, and K. Kobayashi (2005). High performance superjunction UMOSFETs with split p-columns fabricated by multi-ion-implantations, Proc. of ISPSD’17, 1-4. [48] R. V. Dalen and C. Rochefort (2004). Electrical characterization of vertical vapor phase doped (VPD) RESURF MOSFETs, Proc. of ISPSD’16, 451-454. [49] T. Nitta, T. Minato, M. Yano, A. Uenisi, M. Harada, and S. Hine (2000). Experimental results and simulation analysis of 250V super trench power MOSFET (STM), Proc. of ISPSD’12, 77-80. [50] T. Kurosaki, H. Shishido, M. Kitada, K. Oshima, S. Kunori, and A. Sugai (2003). 200V multi RESURF trench MOSFET (MR-TMOS), Proc. of ISPSD’15, 211-214. [51] X. B. Chen, P. A. Mawby, K. Board, and C.A.T. Salamab (1998). Theory of a novel voltage-sustaining layer for power devices, Microelectron. J., 29 (12), 1005-1011. [52] Y. Chen, Y. C. Liang, and G. S. Samudra (2005). Theoretical analyses of oxide-bypassed superjunction power metal oxide semiconductor field effect transistor devices. Jpn. J. Appl. Phys., 44(2), 847-856. [53] 友達光電股份有限公司-顯示器解決方案-低溫多晶矽顯示器製程,網址: https://reurl.cc/0o0aZo [54] S. D. Brotherton (1995). Polycrystalline silicon thin film transistors, Semicond. Sci. Technol., 10 (6), 721-738. [55] T. J. Konno and R. Sinclair (1994). Metal-contact induced crystallization of semiconductors, Materials Science Engineering, 179-180, 426-432. [56] S. F. Gong (1987). Al-doped and Sb-doped Polycrystalline silicon obtained by means of metal-induced crystallization, J. Appl. Phys., 62 (9), 3726-3732. [57] L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engstrom, and P. A. Psaras (1987). Crystallization of amorphous silicon during thin-film gold reaction, J. Appl. Phys., 62 (9), 3647-3655. [58] N. Kubo, N. Kusummoto, T. Inushima, and S. Yamazaki (1994). Characterization of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method, IEEE Trans. Electron Devices, 41 (10), 1876-1879. [59] G. K. Giust and T. W. Sigmon (1998). High-performance thin-film transistors fabricated using excimer laser processing and grain engineering, IEEE Trans. Electron Devices, 45 (4), 925-932. [60] M. Cao, S. Talwar, K. J. Kramer, T. W. Sigmon, and K. C. Saraswat (1996). A high-performance Polysilicon thin-film transistor using XeCl excimer laser crystallization of pre-patterned amorphous Si films, IEEE Trans. Electron Devices, 43 (4), 561-567. [61] A. G. Lewis, D. D. Le, and R. H. Bruce (1992). Poly silicon TFT circuit design and performance, IEEE J. Solid-State Circuits, 27 (12), 1833-1841. [62] K. R. Olasupo and M. K. Hatalis (1996). Leakage current mechanism in sub-micron Polysilicon thin-film transistors, IEEE Trans. Electron Devices, 13 (8), 1218-1223. [63] S. M. Sze (1982). Physics of Semiconductor Devices, 2nd Edition, New York: Wiley-Interscience. [64] G. Vincent, A. Chantre, and D. Bois (2008). Electric field effect on the thermal emission of traps in semiconductor junctions, J. Appl. Phys., 50 (8), 5484-5487. [65] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-meimand (2003). Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits, Proc. of IEEE, 91 (2), 305-327. [66] S. Wolf (1995). Silicon processing for the VLSI ERA, volume 3: the submicron MOSFET, Lattice Pr. [67] K. R. Olasupo and M. K. Hatalis (1996). Leakage current mechanism in sub-micron Polysilicon thin-film transistors, IEEE Trans. Electron Devices, 13 (8), 1218-1223. [68] G. A. Bhat, Z. Jin, H. S. Kwok, and M. Wong (1999). Effects of longitudinal grain boundaries on the performance of MILC-TFT’s, IEEE Electron Device Lett., 20 (2), 97-99. [69] J. G. Fossum, A. Ortiz-Conde, H. Shichijo, and S. K. Banerjee (1985). Anomalous leakage current in LPCVD Polysilicon MOSFET’s, IEEE Trans. Electron Devices, 32 (9), 1878-1884. [70] K. R. Olasupo and M. K. Hatalis (1996). Leakage current mechanism in sub-micron Polysilicon thin-film transistors, IEEE Trans. Electron Devices, 13 (8), 1218-1223. [71] M. Lack, I. W. Wu, T. J. King, and A. G. Lewis (1993). Analysis of leakage currents in Poly silicon thin film transistors, Proc. of IEDM 1993, 385-388. [72] A. T. Hatzopoulos, D. H. Tassis, N. H. Hastas, C. A. Dimitriadis, and G. Kamarinos (2005). An analytical hot-carrier induced degradation model in Polysilicon TFTs, IEEE Trans. Electron Devices, 52 (10), 2182-2187. [73] L. Mariucci, G. Fortunato, A. Bonfiglietti, M. Cuscuna, A. Pecora, and A. Valletta (2004). Polysilicon TFT structures for kink-effect suppression, IEEE Trans. Electron Devices, 51 (7), 1135-1142. [74] M. Hack and A.G. Lewis (1991). Avalanche induced effects in Polysilicon thin-film transistors, IEEE Electron Device Lett., 12 (5), 203-205. [75] A. Valletta, P. Gaucci, L. Mariucci, and G. Fortunato (2007). Modeling velocity saturation and kink effects in p-channel Polysilicon thin film transistors, Thin Solid Films, 515 (19), 7417-7421. [76] M. Valdinoci, L. Colalongo, G. Baccarani, G. Fortunato, A. Pecora, and I. Policicchio (1997). Floating body effects in Polysilicon thin-film transistors, IEEE Trans. Electron Devices, 44 (12), 2234-2241. [77] D. D. Venutoa and M. J. Ohletzb (2003). Floating body effects model for fault simulation of fully depleted CMOS/SOI circuits, Microelectronics J., 34 (10), 889-895. [78] S. Bindra, S. Haldar, and R. S. Gupta (2003). Modeling of kink effect in Polysilicon thin film transistor using charge sheet approach, Solid-State Electron., 47 (4), 645-651. [79] J. I. Han, G. Y. Yang, and C. H. Han (1999). A new self-aligned offset staggered Polysilicon thin-film transistor. IEEE Electron Device Lett., 20 (8), 381-383. [80] C. A. Dimitriadis and M. Miyasaka (2000). Performance enhancement of offset gated Polysilicon thin-film transistors, IEEE Electron Device Lett., 21 (12), 584-586. [81] K. Ohgata, Y. Mishima, and N. Sasaki (2000). A new dopant activation technique for Poly-Si TFTs with a self-aligned gate-overlapped LDD structure, Proc. of IEDM 2000, 205-208. [82] S. D. Zhang, R. Han, and M. J. Chan (2001). A novel self-aligned bottom gate Poly-Si TFT with in-situ LDD, IEEE Electron Device Lett., 22 (8), 393-395. [83] I. S. Kang, S. H. Han, and S. K. Joo (2008). Novel offset-gated bottom gate Poly-Si TFTs with a combination structure of ultrathin channel and raised source/drain, IEEE Electron Device Lett., 29 (3), 232-234. [84] H. C. Lin, C. M. Yu, C. Y. Lin, K. L. Yeh, T. Y. Huang, and T. F. Lei (2001). A novel thin-film transistor with self-aligned field induced drain, IEEE Electron Device Lett., 22 (1), 26-28. [85] A. A. Orouji and M. J. Kumar (2006). Leakage current reduction techniques in Poly-Si TFTs for active matrix liquid crystal displays: a comprehensive study, IEEE Trans. Device and Materials Reliability, 6 (2), 315-325. [86] K. Tanaka, H. Arai, and S. Kohda (1988). Characteristics of offset-structure polycrystalline-silicon thin-film transistors, IEEE Electron Device Lett., 9 (1), 23-25. [87] D. Ryu, I. Myeong, J. K. Lee, M. Kang, and J. Jeon (2019). Investigation of gate sidewall spacer optimization from off-state leakage current perspective in 3-nm node device, IEEE Trans. Electron Devices, 66 (6), 2532-2537. [88] Shengdong Zhang, Ruqi Han, Johnny K. O. Sin, and Mansun Chan (2001). A novel self-aligned double-gate TFT technology, IEEE Trans. Electron Devices, 22 (11), 530-532. [89] M. C. Lee and M. K. Han (2004). Poly-Si TFTs with asymmetric dual-gate for kink current reduction, IEEE Electron Device Lett., 25 (1), 25-27. [90] X. Luo, J. Wei, X. Shi, K. Zhou, R. Tian, B. Zhang, and Z. Li (2014). Novel reduced on-resistance LDMOS with an enhanced breakdown voltage, IEEE Transactions on Electron Devices, 61 (12), 4304-4308. [91] 陳志強(2004)。LTPS低溫複晶矽顯示器技術,全華科技圖書股份有限公司,2-05~2-07。 [92] S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. S. Lin, B. H. Tseng, J. H. Shy, S. M. Sze, C. Y. Chang, and C. H. Lien (2007). A novel nanowire channel Poly-Si TFT functioning as transistor and nonvolatile SONOS memory, IEEE Electron Device Lett., 28 (9), 809-811. [93] N. I. Lee, J. W. Lee, H. S. Kim, and C. H. Han (1999). High-performance EEPROM’s using n-and p-channel Polysilicon thin-film transistors with electron cyclotron resonance N2O-plasma oxide, IEEE Electron Device Lett., 20 (1), 15-17. [94] J. H. Oh, H. J. Chung, N. I. Lee, and C. H. Han (2000). A high-endurance low-temperature Polysilicon thin-film transistor EEPROM cell, IEEE Electron Device Lett., 21 (6), 304-306.
|