(44.192.112.123) 您好!臺灣時間:2021/03/04 05:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭晉宇
論文名稱:具有鋇摻雜的高性能二氧化錫 薄膜電晶體之研製
論文名稱(外文):Investigation and Fabrication of SnO2:Ba-based High-Performance Thin-Film Transistors
指導教授:李景松
指導教授(外文):Lee, Ching-Sung
口試委員:劉漢胤許渭州
口試委員(外文):Liu, Han-YinHsu, Wei-Chou
口試日期:2020-07-27
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:107
中文關鍵詞:二氧化錫鋇摻雜薄膜電晶體
外文關鍵詞:SnO2Ba-dopedThin films transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一章 導論 1
1.1 研究背景與動機 1
1.2 研究方向 3
1.3 基礎理論 4
1.3.1氧化物半導體導電原理 4
1.3.2 元件工作原理 4
第二章 材料生長與元件製作 6
2.1 基板清洗 8
2.2 閘極介電層生長 9
2.3 主動層沉積 10
2.4 源/汲極電極 11
第三章 材料分析與元件量測 12
3.1 材料分析 12
3.1.1 穿透式電子顯微鏡 12
3.1.2 掃描式電子顯微鏡 14
3.1.3 X光繞射 21
3.1.4 X射線光電子能譜 25
3.1.5 橢圓偏光儀 29
3.1.6 光致發光 34
3.2 不同前驅物薄膜電晶體電性之比較 38
3.2.1 探討鋇摻雜濃度對二氧化錫薄膜電晶體之影響-以醋酸錫和醋酸鋇作為前驅物 38
3.2.2探討鋇摻雜濃度對二氧化錫薄膜電晶體在負偏壓有照光下壓力測試後的差異-以醋酸錫和醋酸鋇作為前驅物 40
3.2.3探討鋇摻雜濃度對二氧化錫薄膜電晶體在負偏壓無照光下壓力測試後的差異-以醋酸錫和醋酸鋇作為前驅物 44
3.2.4探討載流氣體的種類對SnO2:Ba(3 mol.%)薄膜電晶體之影響-以醋酸錫和醋酸鋇作為前驅物 46
3.2.5 探討不同的沉積方法對SnO2:Ba(3 mol.%)薄膜電晶體之影響-以醋酸錫和醋酸鋇作為前驅物 48
3.2.6 探討鋇摻雜濃度對二氧化錫薄膜電晶體之影響-以氯化亞錫與氯化鋇作為前驅物 51
3.2.7探討鋇摻雜濃度對二氧化錫薄膜電晶體在負偏壓有照光下壓力測試後的差異-以氯化亞錫與氯化鋇作為前驅物 53
3.2.8探討鋇摻雜濃度對二氧化錫薄膜電晶體在負偏壓無照光下壓力測試後的差異-以氯化亞錫與氯化鋇作為前驅物 56
3.2.9探討載流氣體的種類對SnO2:Ba(3 mol.%)薄膜電晶體之影響-以氯化亞錫與氯化鋇作為前驅物 58
3.2.10 探討不同的沉積方法對SnO2:Ba(3 mol.%)薄膜電晶體之影響-以氯化亞錫與氯化鋇作為前驅物 60
3.3 醋酸類、氯化物以及醋酸類混合氯化物的薄膜電晶體電性之比較 65
3.3.1負偏壓下照光的不穩定性之比較 70
3.3.2負偏壓下無照光的不穩定性之比較 72
3.3.3主動層以氮氣(N2)分段沉積的三端特性 74
3.4 介電層有/無噴退電性之比較 75
3.4.1主動層以氮氣(N2)直接沉積,介電層分段沉積的三端特性 76
3.4.2主動層以空氣(Air)直接沉積,介電層分段沉積的三端特性 77
第四章 結論與未來展望 78
4.1 結論 78
4.2 未來展望 79
參考文獻 80

[1] A. Cerdeira, M. Estrada, R. Garcı́a, A. Ortiz-Conde, and F.J. Garcı́a Sánchez, “New procedure for the extraction of basic a-Si:H TFT model parameters in the linear and saturation regions,” Solid-State Electronics, vol. 45, no. 7, pp.1077-1080, Jul. 2001.
[2] M. W. Ma, C. Y. Chen, W. C. Wu, C. J. Su, K. H. Kao, and T. S. Chao, “Reliability mechanisms of LTPS-TFT with HfO2 gate dielectric: PBTI, NBTI, and hot-carrier stress,” IEEE Transactions on Electron Devices, vol. 55, no. 5, pp.1153-1160, May 2008.
[3] P. F. Carcia, R. S. McLean, M. H. Reilly, and G. N. Jr. “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Appl. Phys. Lett., vol. 82, no. 7, pp.1117-1119, Feb. 2003.
[4] T. Hirao, M. Furuta, T. Hiramatsu, T. Matsuda, C. Li, H. Furuta, H. Hokari, M. Yoshida, H. Ishii, and M. Kakegawa, “Bottom-gate zinc oxide thin-film transistors (ZnO TFTs) for AM-LCDs,” IEEE Transactions on Electron Devices, vol. 55, no. 11, pp.3136-3142, Nov. 2008.
[5] M. C. Fortunato, M. C. Barquinha, C. M. B. G. Pimentel, M. F. Gonçalves, and J. S. Marques, “Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature,” Appl. Phys. Lett., vol. 85, no. 13, pp.2541-2543, Sep. 2004.
[6] E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, L. M. N. Pereira, and R. F. P. Martins, “Fully transparent ZnO thin‐film transistor produced at room temperature,” Advanced Materials, vol. 17, no. 5, pp.590-594, Mar. 2005.
[7] S. A. Salehizadeh, H. M. Chenari, M. Shabani, H. A. Ahangar, R. Zamiri, A. Rebelo, J. S. Kumar, M. P. F. Graça, and J. M. F. Ferreira, “Structural and impedance spectroscopy characteristics of BaCO3/BaSnO3/SnO3 nanocomposite: observation of a non-monotonic relaxation behavior,’’ R.S.C. Adv., no. 9, pp.2100-2108, Jan. 2018.
[8] A. R. A. A. Sakhta, A. H. Khdro, and A. N. Darwishoand, “Morphological and optical properties of pure and Mg doped tin oxide thin films prepared by spray pyrolysis method,’’ American Journal of Nanosciences, vol. 3, no. 2, pp. 19-23, May 2017.
[9] M. Mizukami, S. I. Cho, K. Watanabe, M. Abiko, Y. Suzuri, S. Tokito, and J. Kido, “Flexible organic light-emitting diode displays driven by inkjet-printed high-mobility organic thin-film transistors,” IEEE Electron Device Letters, vol. 39, no. 1, pp. 39–42, Jan. 2018.
[10] S. Li, L. Feng, J. Zhao, X. Guo, and Q. Zhang, “Low temperature
cross-linked, high performance polymer gate dielectrics for solution-processed organic field-effect transistors,” J. Polym. Sci. Pol. Chem., vol. 6, no. 32, pp. 5884–5890, Jun. 2015.
[11] K. L. McCall, S. R. Rutter, E. L. Bone, N. D. Forrest, J. S. Bissett, J. D. E. Jones, M. J. Simms, A. J. Page, R. Fisher, B. A. Brown, and S. D. Ogier, “High performance organic transistors using small molecule semiconductors and high permittivity semiconducting polymers,” Adv. Funct. Mater., vol. 24, no. 20, pp. 3067–3074, May 2014.
[12] E. G. Bittle, J. I. Basham, T. N. Jackson, O. D. Jurchescu, and D. J. Gundlach, “Mobility overestimation due to gated contacts in organic field-effect transistors,” Nature Commun., vol. 7, p. 10908, Mar. 2016.
[13] X. Gao, C. Di, Y. Hu, X. Yang, F. Zhang, Y. Liu, H. Li, and D. B. Zhu, “Core-expanded naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene) malonitrile groups for high-performance, ambientstable, solution-processed n-channel organic thin film transistors, ”J. Amer. Chem. Soc., vol. 132, no. 11, pp. 3697–3699, Feb. 2010.
[14] Q. P. Tran, J. S. Fang and T. S. Chin, “Properties of fluorine-doped SnO2 thin films by a green sol–gel method,” Materials Science in Semiconductor Processing, vol. 40, pp. 664–669, Dec. 2015.
[15] E. Song, L. Lan, P. Xiao, Z. Lin, S. Sun, Y. Li, W. Song, P. Gao, and J. Peng, “Thin-film transistors with neodymium-incorporated indium–zinc-oxide semiconductors,” IEEE Transactions on Electron Devices, vol. 63, no. 5, pp. 1916-1920, Mar. 2016.
[16] T. Kim, B. Jang, S. Lee, W. Lee, and J. Jang, “Improved negative bias stress stability of sol-gel-processed Mg-doped In2O3 thin film transistors,” IEEE Electron Device Letters, vol. 39, no. 12, pp.1872–1875, Dec. 2018.
[17] R. Babar, S. S. Shinde, A.V. Moholkar, C. H. Bhosale, J. H. Kim, and K.Y. Rajpure, “Physical properties of sprayed antimony doped tin oxide thin films thickness: the role of thickness, ” Journal of Semiconductors, vol. 32, no. 5, pp.053001-1-8, May 2011.
[18] Y. Zhang, J. Tian, X. Zhang, and W. Cai, “The studies on the role of
fluorine in SnO2:F films prepared by spray pyrolysis with SnCl4, ” Journal
of Optoelectronics and Advanced Materials, vol. 13, no. 1, pp.95-99, Jan. 2011.
[19] E. Ching-Prado, A. Watson, and H. Miranda, “Optical and electrical properties of fluorine doped tin oxide thin film,” Journal of Materials Science: Materials in Electronics, vol. 29, no. 18, pp. 15299–15306, Feb. 2018.
[20] C. W. Shih, T. J. Yen, A. Chin,“Low-Temperature Processed Tin Oxide Transistor With Ultraviolet Irradiation," IEEE Electron Device Letters, vol. 40, no. 6, pp.909-912, Jun. 2019.
[21] X. F. Chen, G. He, J. Gao, J. W. Zhang, D. Q. Xiao, P. Jin, and B. Deng, “Substrate temperature dependent structural, optical and electrical properties of amorphous InGaZnO thin films,” Journal Of Alloys And Compounds, vol. 632, pp.533-539, May 2015. [22] J. G. Um, M. Mativenga, P. Migliorato, and J. Jang, “Increase of interface and bulk density of states in amorphous-indium-gallium-zinc -oxide thin-film transistors with negative-bias-under-illumination-stress time,” Applied Physics Letters, vol.101, no. 11, p.113502, 2012.
[23] W. S. Kim, Y. H. Lee, Y. J. Cho, B. K. Kim, K. T. Park, and O. Kim, “Effect of wavelength and intensity of light on a-InGaZnO TFTs under negative bias illumination stress,” ECS Journal Of Solid State Science And Technology, vol. 6, no. 1, pp.Q6-Q9, Jan. 2017.
[24] D. P. Wang, M. P. Hung, J. X. Jiang, T. Toda, C. Y. Li, and M. Furuta, “Effect of drain bias on negative gate bias and illumination stress induced degradation in amorphous InGaZnO thin-film transistors,” JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 53, no. 3, pp.1-3, Jan. 2014.
[25] K. H. Lee, J. S. Jung, K. S. Son, J. S. Park, T. S. Kim, R. Choi, J. K. Jeong, J. Y. Kwon, B. Koo, and S. Lee, “The effect of moisture on the photon-enhanced negative bias thermal instability in Ga-In-Zn-O thin film transistors,” Applied Physics Letters, vol. 95, no. 23, p.232106, Nov. 2009.
[26] V. K. Jayaraman, A. M. Alvarez, and M. D. O. Amador, “Effect of substrate temperature on structural, morphological, optical and electrical properties of IGZO thin films,” Physica E-Low-Dimensional Systems & Nanostructures, vol. 86, pp. 164-167, Feb. 2017.
[27] H. J. Kim, U. Kim, H. M. Kim, T. H. Kim, H. S. Mun, B. G. Jeon, K. T. Hong, W. J. Lee, C. Ju, K. H. Kim, and K. Char, ‘‘Physical properties of transparent perovskite oxides (Ba, La)SnO3 with high electrical mobility at room temperature,’’ Appl. Phys. Exp., vol. 86, no. 16, pp.1652051-1652059, Sep. 2012.
[28] D. O. Scanlon, “Defect engineering of BaSnO3 for high-performance transparent conducting oxide applications,” Phys. Rev. B, vol. 87, no. 16, pp.1612011-1612015, Jan. 2013.
[29] U. Kim, C. Park, T. Ha, Y. M. Kim, N. Kim, C. Ju, J. Park, J.
Yu, J. H. Kim, and K. Char, ‘‘All-perovskite transparent high mobility field effect using epitaxial BaSnO3 and LaInO3,’’ APL Mater., vol. 3, no. 3, p.036101, Feb. 2015.
[30] S. A. Chambers, T. C. Kaspar, A. Prakash, G. Haugstad, and B. Jalan, ‘‘Highly conductive Nb doped BaSnO3 thin films on MgO substrates by pulsed laser deposition,’’ Journal of Alloy and Compounds, vol. 680, pp.343-349, Sep. 2016.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔