(3.238.186.43) 您好!臺灣時間:2021/02/28 15:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳柏智
研究生(外文):CHEN, PO-CHIH
論文名稱:氣體輔助微氣發泡射出成型對成品尺寸收縮與發泡特性之研究
論文名稱(外文):Study of the Shrinkage Characteristics and Foam Properties of Gas-assisted Microbubble-Foam-Injection Molded Parts
指導教授:彭信舒
指導教授(外文):PENG, HSIN-SHU
口試委員:陳惠俐丁永強
口試委員(外文):CHEN, HUI-LITING, YUNG-CHIANG
口試日期:2020-07-20
學位類別:碩士
校院名稱:逢甲大學
系所名稱:機械與電腦輔助工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:129
中文關鍵詞:氣體輔助微氣發泡射出成型聚苯乙烯溢料井成品尺寸收縮抗彎強度
外文關鍵詞:Gas-assisted Microbubble-Foam-Injection MoldingPolystyreneOverflow-wellShrinkage CharacteristicsFlexural Strength
相關次數:
  • 被引用被引用:0
  • 點閱點閱:43
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,隨著綠色環保趨勢與輕量化製程的議題發酵,塑膠製品逐漸朝向材料減量化、產品輕量化與成型品質高之趨勢發展,以降低環境污染與能源節省之需求。「氣體輔助微氣發泡射出成型(Gas-assisted Microbubbles Foam-Injection Molding, GAMF)」為一氣體與熔膠混鍊後進行射出使產品輕量化製程,此製程可因氣體的添加而減少材料用量、由氣泡的成長而抵抗產品因熱造成的收縮變形,以及提高產品尺寸之穩定性等優點;但氣泡在射出過程中,因壓力差異之關係而導致氣泡成長與密度分佈性之問題,一直是發泡射出成型業者面臨的重要課題。
因此,本論文研究目的乃利用一平板試片模具,搭配不同的溢料井設計與不同的製程參數變化,針對GAMF射出試片成型特性、發泡特性與抗彎特性之影響,將透過二階段進行研究與討論。第一階段:首先以CAE模流分析來進行預測,探討在不同的溢料井設計與不同的氣體壓力條件下,紀錄並分析試片量測點之熔膠充填壓力、氣泡成長與密度分佈之情形,同時觀察GAMF製程之試片成型特性(包含:重量、尺寸收縮等),並透過射出成型實驗進行比較,了解試片內部氣泡形態之差異。第二階段:使用DOE方法搭配溢料井設計與GAMF射出參數(包含:氣體壓力、螺桿轉速等),針對GAMF射出試片之抗彎特性與氣泡形態等進行實驗,同時藉由微觀結構來觀察隨著參數變化之氣泡成長與分佈情形,以及成型後的氣泡形態對抗彎特性之關聯性分析與結構變化。
研究結果顯示,使用GAMF射出成型,在熔膠充填過程中,模穴壓力有下降趨勢;在有溢料井條件下,因模穴體積的增加,其模穴壓力比無發泡且無溢料井的壓力來得小,且因氣泡成長空間增加,使得氣泡形態發展相對來得好,其成品的重量相對降低,成品的尺寸收縮因氣泡的成長而改善。透過GAMF射出成型CAE分析成品重量、尺寸收縮與氣泡形態,其分析與實驗結果有相同趨勢。在微觀結構觀察下,氣體壓力與螺桿塑化的混鍊過程,會影響氣泡的分佈性與密合度,相對影響成品的收縮與抗彎強度。具溢料井設計之成型試片隨著溢料井體積的增加,氣泡的成長越明顯,其氣泡的分佈性越鬆散,抗彎強度會因鬆散的氣泡分佈,導致抗彎強度降低;在GAMF射出成型與溢料井之DOE實驗中,使用半溢式的溢料井,並搭配較低的螺桿轉速與較高的氣體壓力進行塑化與成型,可以得到較緊密的氣泡分佈,同時改善成品之尺寸收縮與獲得較佳的抗彎強度,進而改善或達到GAMF射出成品之目的與優化製程方法。
In recent years, with the rise of green environmental protection and lightweight manufacturing, products have gradually developed towards material reduction, lightweight products and high-molding quality, in order to reduce environmental pollution and energy saving needs. "Gas-assisted Microbubbles Foam-Injection Molding (GAMF)" is a process where gas and melt mixed, allowing the molded product to achieve lightweight feature. This process can reduce the amount of materials dosage due to the addition of gas. Besides that, the growth of the bubble will resist the product's thermal deformation and also will have advantages in improving the dimensional stability of the product. However, the problem of bubble growth and density distribution due to the pressure drop during the injection process has always been an important issue facing the foam injection molding industry.
Therefore, the purpose of this thesis is to use a flat-plate specimen with different overflow designs to address the impact of GAMF specimens molding characteristics, foaming characteristics and bending resistance under different gas pressure and process parameters. Research and discussion will be conducted through two stages. The first stage: CAE analysis is used to predict and discuss the melt filling pressure at the measurement-point of the specimen, and the situation of bubble-growth and density distribution under different overflow designs and gas pressures. In addition, observation on the forming characteristics of the specimen in the GAMF process (including weight, size shrinkage, etc.) was verified by injection molding experiments to observe the difference of the shape of the bubbles within the specimen with the microstructure system. In the second stage: through the design of the experiment (DOE) method with overflow design and GAMF molding conditions (including gas pressure, screw speed, etc.), experiments were conducted on the flexural properties and bubble shape of the GAMF specimen. At the same time, through the microstructure system, the bubble-growth and distribution within the specimen under different process conditions were observed, as well as the correlation analysis of flexural properties and the bubble shape after forming.
The research results showed that the use of GAMF injection molding can reduce cavity pressure during the melt filling process. When using the overflow, due to the increase in the cavity volume, the cavity pressure is higher than the pressure without foaming and overflow. Relatively, the greater the growth space of the bubble, the shape of the bubble is better, the weight of the finished part is reduced, and the size shrinkage of the finished part is improved by the growth of the bubble. Through CAE analysis results of finished product weight, size shrinkage and bubble shape prediction, the analysis and experimental results have the same trend. Under the observation of the microstructure, the mixing process of gas pressure and screw plasticization will affect the distribution and adhesion of bubbles, and relatively affect the shrinkage and flexural strength of the finished product. In addition, with the increase in the volume of the overflow, the growth of the bubbles is more obvious, and the distribution of the bubbles is looser. The flexural strength will be reduced due to the distribution of loose bubbles. In the GAMF injection molding and DOE match of the overflow, the use of a semi-overflow, combined with the plasticization and molding of lower screw speed and larger gas pressure, can obtain a tighter bubble distribution. At the same time, the size shrinkage of the finished product is improved and obtains better bending characteristics, thereby improving or achieving the purpose of the GAMF injection of the finished product and optimizing the process method.
誌謝
中文摘要
英文摘要
目錄
表目錄
圖目錄
符號說明
第一章 緒論
1-1 前言
1-2 結構發泡射出成型之研究與應用
1-3 研究動機與目的
1-4 論文架構
第二章 文獻回顧
2-1 發泡塑膠之材料特性與成型方法
2-2 結構發泡射出成型之應用與研究
2-3 氣泡形態對射出產品成型之影響
第三章 基本原理
3-1 高分子材料介紹
3-2 射出成型原理與製程
3-3 射出成型缺陷與改善方法
3-4 物性檢測與觀察
第四章 電腦輔助模擬分析
4-1 前言
4-2分析模組
4-3 分析說明與流程
4-4 分析結果與討論
第五章 實驗方法與步驟
5-1 實驗材料
5-2 實驗設備與儀器
5-3 實驗方法
第六章 結果與討論
6-1 發泡射出成品成型特性之影響
6-2 實驗設計對成品發泡特性之影響
第七章 結論與未來發展方向
7-1 結論
7-2 未來發展方向
參考文獻
作者簡歷
[1]王昭欽(2002)。發泡之原理及其在押出成型加工之應用,財團法人塑膠發展中心/工業技術人才培訓計劃講義。
[2]Colton, J. S., Suh, N. P. (2007). The Nucleation of Microcellular Thermoplastic Foam: Process Model and Experimental Results, Advanced Manufacturing Processes, 1(3), 341-364.
[3]Colton, J. S., Suh, N. P. (1987). The Nucleation of Microcellular Thermoplastic Foam with Additives: Part II: Experimental Results and discussion, Polymer Engineering & Science, 27, 493-499.
[4]Colton, J. S., Suh, N. P. (1987). The Nucleation of Microcellular Thermoplastic Foam with Additives: Part I: Theoretical Considerations, Polymer Engineering & Science, 27, 485-492.
[5]Colton, J. S., Suh, N. P. (1987). Nucleation of microcellular foam: Theory and practice, Polymer Engineering & Science, 27, 500-503.
[6]Park, C. B., Suh, N. P. (1993). Extrusion of microcellular polymers using a rapid pressure drop device, Society of Plastics Engineers Annual Technical Papers, 39, 1818-1822.
[7]Martini, J., Waldman, F., Suh, N. P. (1982). The production and analysis of microcellular thermoplastic foams, Society of Plastics Engineers Annual Technical Papers, 28, 674-676.
[8]Eckert, C. A., Knutson, B. L., Debenedetti, P. G. (1996). Supercritical Fluids as Solvents for Chemical and Materials Processing, Nature, 383, 313-318.
[9]Okamoto, K. T. (2003). Microcellular Processing, Hanser Publishers.
[10]Mergenhagen, T. (2003). Chemical Foaming Agents in Thermoplastics and Thermosets, Blowing Agents and Foaming Processes.
[11]Błędzki, A. K., Faruk, O., Kirschling, H., Kuhn, J., Jaszkiewicz, A. (2006). Microcellular Polymers and Composites. Part I. Types of Foaming Agents and Technologies of Microcelluar Processing, Polimery, 51, 697-703.
[12]Fan, C., Wan, C., Gao, F., Huang, C., Xi, Z., Xu, Z., Zhao, L., Liu, T. (2015). Extrusion Foaming of Poly (Ethylene Terephthalate) with Carbon Dioxide Based on Rheology Analysis, Journal of Cellular Plastics, 52, 277-298.
[13]Maio, E. D., Mensitieri, Iannace, G., S., Nicolais, S. L., Li, W., Flumerfelt, R. W. (2005). Structure Optimization of Polycaprolactone Foams by Using Mixtures of CO2 and N2 as Blowing Agents, Polymer Engineering & Science, 45, 432-P441.
[14]Kim. S. G., Park, C. B., Kang, B. S., Sain, M. (2006). Foamability of Thermoplastic Vulcanizates (TPVs) with Carbon Dioxide and Nitrogen, Cellular Polymers, 25, 19-33.
[15]Li, G., Wang, J., Park, C. B., Simha, R. (2007). Measurement of Gas Solubility in Linear/Branched PP Melts, Journal of Polymer Science Part B: Polymer Physics,45, 2497-2508.
[16]Wypych, G. (2017). Handbook of Foaming and Blowing Agents, Mechanism of Action of Blowing Agents, ChemTec, 29-43.
[17]Sauceau, M., Fages, J., Common, A., Nikitine, C., Rodier, E. (2011). New Challenges in Polymer Foaming: A review of Extrusion Processes Assisted by Supercritical Carbon Dioxide, Progress in Polymer Science, 36, 749-766.
[18]Michaeli, W., Krumpholz, T., Obeloer, D. (2008). Profoam - A new Foaming Process for Injection Molding, Society of Plastics Engineers, 1019-1023.
[19]Sato, Y., Fujiwara, K., Takikawa, T., Takishima, S., Masuoka, H., (1999). Solubilities and Diffusion Coefficients of Carbon Dioxide and Nitrogen in Polypropylene, High-Density Polyethylene and Polystyrene Under High Pressures and Temperatures, Fluid phase equilibria, 162, 261-276.
[20]Matuana, L., Park, C. B., Balatinecz, J. (1997). Processing and Cell Morphology Relationships for Microcellular Foamed PVC/Wood-Fiber Composites, Polymer Engineering & Science, 37, 1137-1147.
[21]Colton, J. S., Suh, N. P. (1987). Nucleation of Microcellular Foam Theory and ractice, Polymer Engineering & Science, 27, 500-503.
[22]Bhatti, A. S., Dollimore, D., Goddard, R. J., O’Donnell, G. (1984). The Effects of Additives on the Thermal Decomposition of Azodicarbonamide, Thermochimica, 76, 273-286.
[23]Frank, N. R., Harkins, J. J. C., Ehrenfeld, J. F. E. (1966). Textured foam processes, US Patent 3, 293, 094.
[24]Beyer, C. E., Dahl, R. B. (1962). A Method of Molding Expandable Thermoplastic Resinous Beads, US Patent 3, 58, 161.
[25]Frank, N. R., Harkins, J. J. C., Ehrenfeld, J. F. E. (1966). Textured foam Products, US Patent 3, 293, 108.
[26]Spencer, R. S., Gilmore, G. D. (1951). Some Flow Phenomena in the Injection Molding of Polystyrene, Journal of Colloid Science, 6, 18-132.
[27]Yuan, M., Turng, L. S. (2005). Microstructure and Mechanical Properties of Microcellular Injection Molded Polyamide-6 Nanocomposites, Polymer, 46, 7273.
[28]田建志(2005)。超臨界流體微細發泡射出成型ABS材料之研究,碩士論文,清雲科技大學機械工程研究所。
[29]江勝吉(2017)。微細發泡射出成型製程參數對機械性質與氣泡形態之影響,碩士論文,國立高雄應用科技大學模具工程系。
[30]鍾明修(2006)。超臨界微細發泡射出成型製程特性之研究,博士論文,中原大學機械工程學系。
[31]Yamamoto, Y., S., Goto, H., Uezono, H., Asaoka, F., Wang, L., Ando, M., Ishihara, S., Ohshima, M. (2017). A New Microcellular Foam Injection-Molding Technology Using Non-Supercritical Fluid Physical Blowing Agents, Polymer Engineering and Science, 57, 105.
[32]Wang, C., Cow, K., Campbell, G.A. (1996). Microcellular Foam of Polypropylene Containing Low Glass Transition Rubber Particles in an Injection Molding Process, Journal of Vinyl and Additive Technology, 2, 167-169.
[33]Lee, J., Turng, L.S., Dougherty, E., Gorton, P. (2011). Novel Foam Injection Molding Technology Using Carbon Dioxide-Laden Pellets, Polymer Engineering and Science, 51, 2295.
[34]Collias, D.I., Baird, D.G., Borggreve, J.M. (1994). Impact Toughening of Polycarbonate by Microcellular Foaming, Polymer, 35, 3978.
[35]Collais, D.I., Baird, D.G. (1995). Tensile Toughness of Microcellular Foams of Polystyrene, Styrene acrylonitrile Copolymer, and Polycarbonate, and the Effect of Dissolved Gas on the Tensile Toughness of the same Polymer Matrices and Microcellular Foams, Polymer Engineering and Science, 35, 1167-1177.
[36]Hou, J., Zhao, G., Wang, G., Dong, G., Xu, J. (2017). A novel gas-assisted microcellular injection molding method for preparing lightweight foams with superior surface appearance and enhanced mechanical performance, Materials and Design, 127, 115.
[37]Kramschuster, A., Cavitt, R., Ermer, D., Chen, Z., Turng, L.S. (2005). Quantitative Study of Shrinkage and Warpage Behavior for Microcellular and Conventional Injection Molding, Polymer Engineering and Science, 45, 1408.
[38]Chen, S.C., Hsu, P.S., Hwang, S.S. (2013). The Effects of Gas Counter Pressure and Mold Temperature Variation on the Surface Quality and Morphology of the Microcellular Polystyrene Foams, Journal of Applied Polymer Science, 127, 4769.
[39]Lee, J., Turng, L.S., Dougherty, E., Gorton, P. (2011). A novel method for improving the surface quality of microcellular injection molded parts, Polymer, 52, 1436.
[40]Huang, H.X., Wang, J.K. (2008). Equipment Development and Experimental Investigation on the Cellular Structure of Microcellular Injection Molded Parts, Polymer, 27, 513.
[41]柯富利(2012)。冷卻速率與模內氣體反壓技術應用於聚丙烯超臨界微細發泡產品結晶度與發泡品質影響之研究,碩士論文,中原大學機械工程學系。
[42]蕭宇倫(2011)。模內氣體反壓與動態模溫協同控制系統應用於超臨界微細發泡射出成型發泡控制及產品機械性質之研究,碩士論文,中原大學機械工程學系。
[43]許評順(2011)。模內氣體反壓與動態模溫機制應用於超臨界微細發泡射出成型發泡控制與表面品質影響之研究,博士論文,中原大學機械工程學系。
[44]Xu, X., Park, C.B., Lee, J.W.S., Zhu, X. (2008). Advanced Structural Foam Molding Using a Continuous Polymer/Gas Melt Flow Stream, Journal of Applied Polymer Science, 109, 2855.
[45]Cha, S.W., Yoon, J.D. (2005). The Relationship of Mold Temperatures and Swirl Marks on the Surface of Microcellular Plastics, Polymer Plastics Technology and Engineering, 44, 795.
[46]Bledzki, A.K., Kirschling, H., Steinbichler, G., Egger, P. (2004). Polycarbonate Microfoams With a Smooth Surface and Higher Notched Impact Strength, Journal of Cellular Plastics, 3108.
[47]Hou, J., Zhao, G., Zhang, L., Dong, G., Wang, G. (2018) Foaming Mechanism of Polypropylene in Gas-Assisted Microcellular Injection Molding, Industrial and Engineering Chemistry Research, 57, 4710.
[48]Wang, M.L., Chang, R.Y., Hsu, C.H. (2018). Molding Simulation: Theory and Practice, Hanser Publications.
[49]張榮語(1998)。射出成型模具設計-材料特性、模具設計、操作實務,高立圖書有限公司。
[50]WEB@TSC, Injection Molding, Polyplastics. form https://www.polyplastics.com/ch/support/mold/outline/
[51]王茂齡、張榮語、許嘉祥(2018)。模流分析理論與實務,科盛科技股份有限公司。
[52]AMETEK Sensors, Test & Calibration, Flexural Strength Testing. form
https://www.ametektest.com/learningzone/testtypes/flexural-strength-testing
[53]科盛科技股份有限公司(2007)。Moldex 模流分析技術與應用,全華圖書股份有限公司。
[54]Lee, J., Turng, L.S., Dougherty, E., Gorton, P. (2011). A novel method for improving the surface quality of microcellular injection molded parts, Polymer, 52, 1436-1446.
[55]Ameli, A., Jahani, D., Nofar, M., Jung, P. U., Park, C. B. (2014). Development of high void fraction polylactide composite foams using injection molding: Mechanical and thermal insulation properties, Composites Science and Technology, 90, 88-95.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔